

ARIZONA BIOMEDICAL RESEARCH CENTRE

All Black Adults SHOULD Be Offered Genetic Screening for TTR Amyloidosis

Andrew Boshara, MD FACC

Advanced Heart Failure and Transplant Cardiology

St. Joseph Hospital and Medical Center

Sonia Sabrowsky, MS, CGC

Certified Genetic Counselor Instructor in Medical Genetics Mayo Clinic Arizona

Racial Disparities in Cardiac Disease

Compared to White patients, Black Americans...

- Are more likely to develop CHF and to do so at an earlier age
- Have a 2.5x increased risk of hospitalization for heart failure
- Have higher rates of myocardial infarction and worse outcomes after acute coronary events
- Are 30% more likely to die from heart disease

ATTR-CM is a lifethreatening disease that disproportionately affects older adults and people of African descent.

TTR Gene

- Located on chromosome 18q12.1
- Encodes for transthyretin protein
 - Homo-tetrameric carrier protein
 - Thyroid hormone transport
 - Retinol transport
 - Other potential intracellular involvement...
 - Proteolysis, nerve regeneration, autophagy, glucose homeostasis
- Pathogenic variants -> amyloid deposition
 - Predominantly affects peripheral nerves and heart

hATTR Inheritance

- Autosomal Dominant
 - 50% risk to children
 - Expected 50% risk to other firstdegree relatives (sibs, parents)
- ~150 hATTR-causing variants have been identified
- Incomplete penetrance
- Variable expressivity

Geographical Distribution of p.Val142Ile Variant Prevalence (Chandrashekar et al., 2021 – Figure 1)

Prevalence of p.Val142lle Variant

- Among African Descent: 3.0% 3.5%
- General Population*: 0.3% 1.6%

*Proportionate to percentage of population that is of African descent

Among vATTR-CM: 66% - 79%

Demographics of p.Val142Ile vATTR-CM

- African descent: 75% 100%
- Male predominance: 73% 96%
- Age of symptom onset: 63 years
- · Age of diagnosis: 67 71 years
- Atrial fibrillation: 25% 38%

Clinical Outcomes

- · Increased incident heart failure in carriers
- · Lower reported survival compared to other
- types of ATTR-CM

Racial Disparities in Cardiac Amyloidosis

African Americans with hATTR...

- Present with more advanced disease compared to Caucasians with ATTRwt despite having a non-invasive method for early detection (genetic testing)
- Have a median survival of 25.6 months (p.V142I hATTR) vs 43 months (ATTRwt)
- Have twice the risk of incident heart failure compared to non-carriers
- Are disproportionately underrepresented in relevant clinical trials
 - Despite the high burden of ATTR-CM among Black individuals, most clinical data for ATTR-CM are from North America and Europe.

Benefits of Early Detection

- Early education
 - Awareness of signs, symptoms, resources
 - Notification of at-risk relatives & cascade testing
- Efforts to prevent progressive clinical disease
 - Baseline and serial surveillance to implement treatment at initial onset
 - One expert consensus group suggests begin monitoring 10 years prior to predicted age of onset to establish baseline then annual follow-up with increased frequency if needed
 - Active research into potentially preventative meds/supplements (Glavonoid)
- Avoidance of misdiagnosis as other forms of heart failure (HCM, RCM, etc.)
- Involvement in clinical trials if interested

Currently: When to Consider Genetic Testing

- All patients with established diagnosis of ATTR cardiac amyloidosis
 - Differentiate between ATTRwt and ATTRv to better characterize:
 - Clinical manifestations
 - Prognosis
 - Treatment selection
 - Importance of screening family members
- Family members of individuals with known *TTR* variant interested in predictive genetic testing

Suggested Approach to Pre-Symptomatic Genetic Testing (Alreshq & Rubert, 2021 – Figure 1)

Limitations in Current Practice

- Seemingly negative family history may hide the presence of a risk variant
- Inheritance may be masked by...
 - Failure to recognize the condition
 - Early death of a parent before symptoms
 - Later onset of disease in a parent
 - Incomplete penetrance

- TTR gene analysis is already available on direct-to-consumer (DTC) testing
 - Often report on presence of 3 most common variants including p.Val142Ile
 - Individuals may not be expecting risk result or prepared to process its significance

Genetic Testing: simpler and more accessible than ever

- Sample can be collected via blood draw or at-home saliva kit
- Commercial send out labs often have convenient insurance billing assistance
 - Alternative \$250 self-pay cost
- Sponsored testing programs
 - No-charge genetic testing
 - Eligibility criteria based on personal and/or family history
- Expanded genetic counseling services
 - Local hospitals/clinics
 - May be offered by testing laboratory
 - Partnership with independent telehealth company
 - National Society of Genetic Counselors: <u>www.findageneticcounselor.com</u>

Case Example: 45yo Male

<u>History</u>

- Self-referred to discuss TTR p.V122I variant on DTC testing
- Reported Nigerian and other West African ancestry
- No personal or family history of related symptoms

Considerations

- Clinical confirmatory testing
- Family letter for cascade testing
- Age-dependent penetrance
- Follow-up education, evaluation, & screening with multi-disciplinary amyloid team

Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews[®] [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1116/

Alreshq, R., & Ruberg, F. L. (2021). Clinical approach to genetic testing in amyloid cardiomyopathy: from mechanism to effective therapies. *Current opinion in cardiology*, *36*(3), 309–317. <u>https://doi.org/10.1097/HCO.00000000000841</u>

Chandrashekar, P., Alhuneafat, L., Mannello, M., Al-Rashdan, L., Kim, M. M., Dungu, J., Alexander, K., & Masri, A. (2021). Prevalence and Outcomes of p.Val142Ile *TTR* Amyloidosis Cardiomyopathy: A Systematic Review. *Circulation. Genomic and precision medicine*, *14*(5), e003356. <u>https://doi.org/10.1161/CIRCGEN.121.003356</u>

Matsushita, H., Isoguchi, A., Okada, M., Masuda, T., Misumi, Y., Tsutsui, C., Yamaguchi, N., Ichiki, Y., Sawashita, J., Ueda, M., Mizuguchi, M., & Ando, Y. (2021). Glavonoid, a possible supplement for prevention of ATTR amyloidosis. *Heliyon*, 7(10), e08101. <u>https://doi.org/10.1016/j.heliyon.2021.e08101</u>

Shah, K. B., Mankad, A. K., Castano, A., Akinboboye, O. O., Duncan, P. B., Fergus, I. V., & Maurer, M. S. (2016). Transthyretin Cardiac Amyloidosis in Black Americans. *Circulation. Heart failure*, *9*(6), e002558. <u>https://doi.org/10.1161/CIRCHEARTFAILURE.115.002558</u>

Spencer-Bonilla, G., Njoroge, J. N., Pearson, K., Witteles, R. M., Aras, M. A., & Alexander, K. M. (2021). Racial and Ethnic Disparities in Transthyretin Cardiac Amyloidosis. *Current cardiovascular risk reports*, *15*(6), 8. <u>https://doi.org/10.1007/s12170-021-00670-y</u>

