

Characteristics, Accomplishments and Challenges of Existing Systems

Dr. George Poste

Chief Scientist, Complex Adaptive Systems Initiative and Regents Professor of Health Innovation
Arizona State University
george.poste@asu.edu
www.casi.asu.edu

National Academy of Engineering Forum on Complex Unifiable Systems

Complex Food and Agricultural Systems:

Engineering For Sustainability and Resilience

September 9, 2021

Complex Food and Agricultural Systems: Accomplishments (US-G7 Centric Perspective)

- major gains in productivity, food abundance and affordability
 - mechanization (1900 onwards)
 - plant and animal breeding technologies (1970s onwards)
 - biotechnology (1990s onwards)
 - digital ag (2010 onwards)
- strengthened regulatory frameworks for food quality/ standards/safety/labeling and environmental protection
- sophisticated integrated supply chain systems from farm to fork
 - refrigeration, storage and transportation networks
 - provenance and 'touch points' across the supply chain

Complex Food and Agricultural Systems: Accomplishments

- next-generation disruptive technologies to enhance productivity and optimize land use/resources management
 - technology convergence (life sciences, engineering, computing)
 - sensor networks, geospatial mapping
 - automation, robotics, drones, autonomous vehicles
 - vertical farms in urban settings
 - synthetic biology, gene editing
 - 'alt meat' and other biomimetic nutrition products
- data and digital (precision) ag the new cash crop
 - unprecedented scale, content, connectivity
 - big data, ML/Al analytics, cyberbiosecurity
- block chain: new business models/contracts/ supply chain provenance

Complex Food and Agricultural Systems: Challenges

- 25% of world population (1.8 billion) live on less than \$3/day
- UN WFP estimates 688 million people under-nourished and 2 billion suffer micronutrient deficiencies
- 2.3 billion people suffer from diseases related to unsafe water supplies
- est. 13% global annual crop yields lost to pathogens/pests
- est. 30-50% of global food supply wasted
- est. 25-30% of global anthropogenic greenhouse gases (GHG) attributable to food chain
- direct and indirect consequences of food and ag sector activities intrinsic to all 17 of the Sustainable Development Goals defined in the 2030 Agenda for Sustainable Development
- meeting IPCC goals will require substantial changes in agricultural practices and global resources management

Complex Food and Agricultural Systems: Challenges

- projected 70% increase in food production needed by 2050 to feed 9 billion people
- sustained disparities in access of LICs to benefits of productivity enhancement, sustainability and safe nutrition
- LIC locked into a cycle of subsistence farming
- disproportionate impact of climate change on LIC/indigenous food systems
- distortion of global markets
 - national subsidies, import tariffs, quotas
- lack of LIC commercial wireless network connectivities as obstacles to new technology adoption
- balance of food production shifting from HICs to high population MICs
 - China, Brazil, India but limited R&D contributors to domestic R&D and CGAIR

The Global Food and Agricultural System: A Complex Adaptive System (CAS) Comprising Multiple Interacting CAS Systems

The Global Food and Agricultural System: A Complex Adaptive System (CAS) Comprising Multiple Interacting CAS Systems

The Global Food and Agricultural System

stakeholders

- multi-domain
- multi-sector
- national
- · international

goals

- scale
- sustainable
- equity
- security

A Complex Adaptive System (CAS)
Comprising
Multiple Interacting CAS Systems

strategic drivers

- supranational policies
 - SDGs
 - IPCC

- markets
- technology
- investment
- regulation

- · one health
- urbanization
- digital ag and big data
- cyberbiosecurity

The Global Food and Agricultural System

The US Food and Agricultural Ecosystem Is Not Optimized for Resilience

- dramatic escalation of food insecurity in the COVID-19 pandemic
- 54 million Americans (18 million children)
 experienced uncertainty in reliable food supply
- choke points in supply chain driven by processing plant consolidations
 - 12 plants produce > 50% beef; 12 produce > 50% pork products
- processing plants as 'super spreader' locations
 - est. 300K excess cases and 5K deaths
- plant work force comprises disproportionate marginalized low income/education employees
 - immigrants, refugees, people of color

The Global Food and Agricultural System

Complexity Ignored: Silos Subvert Solutions

fragmented, linear, reductionist concepts, public policies and investments versus

holistic, systems-based strategies for risk assessment and mitigation

Complex Food and Agricultural Systems

- the food and agriculture sectors (in common with public health and healthcare) are classic complex adaptive systems (CAS) that comprise multiple interactive CAS subsystems (a system of systems)
- without more sophisticated system-based approaches to (supranational) public policy and R&D investment by the public and private sectors the current fragmented patchwork of 'siloed' components, will persist and fail to achieve the required global resiliency and equity
- continued propagation of current reductionist, linear and siloed polices and priorities will amplify risk, vulnerabilities and disparities and trigger escalating socio-economic stresses, humanitarian crises, geopolitical instabilities and conflicts