"L'illettrisme scientifique: quelle réalité/quels écueils"

Summer School of the Institut des Hautes Etudes en Sciences et Technologie, Gréoux-les-Bains (France), August 28, 2011

Sander van der Leeuw Arizona State University

How do we perceive?

- Cognition is the only interface between people and the world outside them
- Everything we know and think passes through the cognitive filter
- That filter is biased in various ways:
 - We only cognize a small number of dimensions
 - Our ideas are underdetermined by observations and over-determined by prior experience

What are the consequences?

- Our perception is partial
- About any complex system, many theories are possible
- Later experiences build self-referentially on earlier ones
- Science is but one among a range of alternative systems to 'make sense' of the world around us

What is scientific illiteracy?

- NOT: absence of scientific literacy
- BUT: having a different way to 'make sense' of one's experiences
 - Hugh Jones' experience in the Amazon
- That 'way to make sense' is acquired very young
 - Family, school, associations, social network are the context in which this happens
 - Nowadays the internet is a major agent in this domain

Is there a scientific literacy crisis in the USA?

- Prominent elite, immigration helped build scientific literacy
- Science literacy has been stable until recently
- De Tocqueville Jeffersonian notion of science as part of the competencies of the citizen
- BUT
- Poor education system
- Elite immigration has been slowed down
- Proliferation of independent religious movements
- Possibility to self-educate children
- HENCE: many children not in contact with science or other 'universalizing' cultures
- Currently 1/3 of the US population is deliberately deaf to science

Current crises

- Apparently many crises: environmental, financial, political, etc ...
- 'Crisis is a temporary incapacity to process the information a society needs to process in order to deal with the dynamics of which it is part'
- In the end there is only one crisis: a crisis of information processing in society
- Why? Insufficient shared ways of thinking to align stakeholders in society
 - Politics in EU and USA as examples
- What happens when this process persists?

A lesson from archaeology

- Tainter (1988):
 - Roman empire spread as long as it could capture 'stored energy', in its case treasure (in ours: fossil fuel)
 - It used that to build infrastructure (including army and administration), spread culture (shared ideas)
 - When it was thrown back on annual solar energy, it could not maintain that dynamic
 - In the meantime the periphery had taken over many ideas
 - The interest of people to be part of the Empire waned; people began to look out for themselves
 - As a result, the Empire broke apart

STEM is the foundation of our society

- Our society holds together because of STEM culture:
 - Includes all sciences
 - Universalist
 - Produces material advantages for many
 - Projects a vision
- Faith in STEM culture is regressing in the West, spreading beyond it
- BRICS periphery is quickly learning all that we have to teach, and is taking off on their own.
- How much longer will material and consumption growth in the West (a) be possible, and (b) be desirable and desired?
- Innovation is needed to keep the system working, yet
- US patenting indicates the total economic contribution per patent is decreasing since a century.

Is STEM 'truth' or social construct?

- Science is a structured process of questioning, observation and organization of knowledge
 - The process is undertaken and maintained by a social community of scientists
- Society constructs its context and values, and codefines the questions and means to observe
 - Objectively observed facts answer subjectively, selfreferentially negotiated questions
 - It's not about 'true' or 'false', but about defining the domain and degree of validity of observations
- The knowledge produced is generally reliable and used to construct society
 - Hence it has to be integrated in the societal dynamic

The changing role of STEM

- After 200+ years of symbiosis, science and society have grown apart
- STEM no longer responds effectively to society's expectations
 - Society's expectations of STEM are unrealistic
 - Unintended consequences are increasing
- Society is losing trust (interest?) in science
 - Reductions in R&D funding at all levels in all western countries
- Both society and the science community have become defensive
 - Science tries to impose its values, society to deny them
- Why?

Institutionalization of STEM

- STEM has been institutionalized (academia, GRO's, industrial R&D)
- Its role is institutionalized as provider of
 - innovation for industry
 - knowledge for decision-making
- This has changed the STEM process itself (fig 1)
 - from observation driven to discipline driven
 - Its world view has been fractured
- But it also changed its relation to society
 - It has politicized STEM, made it contentious

Transformation into disciplines

Science and politics

- Politics: admittedly subjective
 - Challenges the irrational bases of society, mediates a nonrational but emotionally satisfying operational solution
 - Looks forward (emergence)
 - Deals head-on with complexity (brings dimensions out)
 - Topics relatively stable over time
- Science: many 'objectivities'
 - Investigates these irrational bases by raising questions and trying to find rational answers
 - Looks back (origins)
 - Simplifies (reduces dimensions)
 - Rapidly changing topics; different disciplinary perspectives
- Which drives which?
 - Simplified visions of each impact on one another

Science and the public

- Scientific illiteracy is not lack of understanding
 - Public reception of knowledge never purely intellectual
 - Experienced and judged as material social relationships, interactions and interests
- It's about the trust the public will invest in scientists and scientific institutions
 - Neither science nor trust should be reified
 - They are dynamic, contextual processes interacting with beliefs and occurring in social networks (Layton, Wynne)
- Understanding is a social construct, part of a process of identity construction

Sheep farming after Chernobyl

- Inconsistency and over-optimism of scientific advice undermines trust
 - Scientific idiom of certainty and control contrary to farmers' experience of change and uncertainty
 - Former based on ex-post, latter on ex-ante experience
 - Scientific advice based on wrong model of caesium behavior
 - Scientists ignore farmers' knowledge and advice
 - Farmers lose trust in science
 - Experience scientists as threat to their society
 - Refer to either arrogance or conspiracy of scientists
 - Farmers link their experience to Sellafield controversies and blame the latter, not Chernobyl

Legitimacy and identity

- A fundamental issue is one of identity and legitimation across community boundaries
 - Farmer: my idea is legitimate because I was born here, live here and know every inch of this field, and what it can and cannot do
 - Scientist: my idea is legitimate because I was not born here, don't live here and don't know every inch of the field, but know my science
 - Neither: my idea is legitimate because it responds best to the questions we ask (indeed, we cannot unite on the questions to ask!)

Uncertainty and doubt

- Farmers' ex-ante perspective is about doubt, expecting and dealing with deviations from judgments based on past experience
 - To live with it, they construct their own world view, linking events and observations in different ways
- Scientists' ex-ante perspective is about certainty and its absence, intellectually limiting predictive value of ex-post science
 - They accept uncertainty as a limitation to what they can say, but don't depend on their response to it.

Clarity and ambiguity

- As in the case of science and politics, we have to do with two world views
 - One that aims to remove contradiction and therefore builds an unrealistic view of life
 - To do so, it reduces the number of cognized dimensions of the complex system (doesn't consider questions it cannot answer)
 - One that reconciles itself with contradictions that cannot be dissolved, and 'muddles through'
 - It acknowledges the full complexity of the system and its incapacity to control it
 - Ambivalence and ambiguity play a major role

Expectations and institutions

- Each side expects the other to understand it
 - Absence of understanding breeds distrust
- Scientists at a disadvantage because they claim knowledge and abstraction, farmers understanding and experience
- Scientists' association with government etc. aggravates distrust because it associates them with external power
 - "The sense of being ensnared by an alien and unrecognizing combination of science and bureaucracy" that denies the *identity* of the farmers

Phenomena and ideas

- Phenomena have an infinite number of dimensions,
 - They are essentially poly-interpretable,
- By virtue of the limitations of our cognitive system, ideas have limited dimensionality,
 - They are less poly-interpretable
- Interactions between the realms of ideas and phenomena are asymmetrical
 - Hence the scientific concept of 'unintended consequences'
 - In the public realm, all consequences are unintended and unexpected – and the concept thus does not exist

Have we reached a 'tipping point'?

- Viewing public opinion as a complex system, we need to ask:
 - Whether the shift in trust in science is nearing a 'tipping point'?
 - What might be the cause of such a shift?
 - What we might do, if anything, to delay such a shift?
- I am choosing a resilience perspective on these questions

System boundaries tenuous; innovations possible -"Egalitarian" perspective in unstable, precarious circumstances of reorganization

Things change slowly; resources 'locked up' -"Hierarchist" perspective: limited resources, impose regulation and control

Resources readily available - "Individualist" perspective in a stable world, with ample resources.

Things change very rapidly; 'locked up' resources suddenly released-"Fatalist" perspective: the world is out of control, and life is a game of chance.

The role of hope and fear

- Near Sellafield, fear discredits science
 - Nuclear science only promotes fear
- In health issues, fear reinforces science
 - Health sciences give hope
- In the environmental debate, science has promoted fear, and discredited itself. Why?
 - Within the scientific world, fear raises money
 - In the public domain, hope raises money
 - Soften: scientists acting like politicians in using the environment, brought it in the political domain, could not extricate

Change science?

- If we don't want to be part of the problem, we have to become part of the solution, and identify our problem
- Science has helped create the current situation by being perceived as:
 - Arrogant: thinking the scientific world view is 'better' than others
 - Insular: operating in a closed system, talking mostly to ourselves
 - Deaf: preferring talking and preaching over listening

Institutional context

- Institutions of all kinds have adopted a rationalist perspective and identity
 - This gave rise to backlash alienation and extrainstitutional forms of politics ('Tea Party')
 - 'Crisis of Late Modernity'
- Science assumed (wrongly?) to be the epitome of the skeptical modern institution
 - Scientific institutions should take the lead in changing this perspective

The institutional structure counts

- In judging science, the public very often refers to an analysis of its institutional structure
 - Often more transparent than the science itself
 - People have experience with institutions' ways of working and defending their interests:
 - Accountability, pluralism or hegemony, patyronage, ownership and control
- Scientists would profit from taking this into account

Opening the kitchens of science

- Reflexive recognition of science's conditionality is essential
 - Critically examining the basic pre-analytic assumptions that frame knowledge commitments (paradigms)
 - Integrating the community dynamic in the evaluation of scientific constructs
- Institutional reform of its organization, control and social relations
 - Extended peer-groups to offer criticism from beyond the immediate community, including epistemology
 - Renegotiate boundaries of the scientific and the social to remove inappropriate power structures
- Resistance to this serves to maintain closure around socially achieved forms of interpretation

The social setting counts

- Reasoning and understanding are contextual and uncontrolled in science as elsewhere
 - Problem definitions and solutions are negotiated simultaneously
 - The linear model of science is unrealistic in both public and scientific contexts
 - Reasoning improves with positive stimulus, degrades with alienation and disempowerment
 - Social role of ignorance to avoid direct threat to existing social arrangements
 - This is affected by the many networks individuals are part of
 - The network dynamics themselves create a very unstable situation with complex fields of tension
 - The role of power further complicates this
 - Science's often 'monovalent' approach does not work well in this context