

Genomics, Demographics, Epidemics, Economics and Ethics: The Complex Forces Shaping Healthcare

Dr. George Poste
Chief Scientist, Complex Adaptive Systems Initiative
and Professor of Health Innovation, Arizona State University
george.poste@asu.edu
www.casi.asu.edu

First Constantin Spiegelfeld Lecture, Research Center for Molecular Medicine Austrian Academy of Sciences, Vienna 8 November 2010

Slides available @ www.casi.asu.edu

Challenges for Healthcare Delivery Systems

ENSURING VALUE FOR MONEY IN HEALTH CARE

The role of health technology assessment in the European Union

Corinna Sorenson, Michael Drummond, Panos Kanavos

Observatory Studies Series Nº 11

Health in All Policies

Prospects and potentials

Edited by Timo Ståhi, Matthias Wismar, Eeva Ollila, Eero Lahtinen & Kimmo Leppo

ASSURING THE QUALITY OF HEALTH CARE IN THE **EUROPEAN UNION**

A case for action

Helena Legido-Quigley Martin McKee Ellen Nolte Irene A Glinos

Observatory Studies Series Nº 12

HEALTHY WORKPLACES

GOOD FOR YOU, GOOD FOR BUSINESS

http://hw.osha.europa.eu

for the European Union New challenges for social sciences and the humanities Thinking across boundaries Modernising European research

The Healthcare Challenge

increasing cost of care and acceleration of new technologies

The Healthcare Challenge

Outcomes

clinical, economic, quality-of-life

Innovation and Cost of Care

increasing cost of care and impact of technology acceleration

Access to Care

The Economic, Social and Clinical Benefits of Proactive Mitigation of Disease Risk and Chronic Disease Co-Morbidities

Designing Delivery Systems to Sustain Health (Wellness) Versus Systems for Treating Illness

Shift from Diagnosis and Treatment of Ongoing Disease to Disease Prediction and Prevention

The Intellectual Frontiers of Medicine

The Intellectual Frontiers of Medicine

Systems Biology: Mapping The Design of Complex, Adaptive Networks of Increasingly Higher Structural Order

Gene Expression

Cells and Tissues

Protein Structure and Function

Organs and Homeostasis

Molecular Pathways

Whole Organism (System)

The Intellectual Frontiers of Medicine

GENOMFORSCHUNG IN ÖSTERREICH

Forschen für Gesundheit

Die Genomik untersucht die Erbanlagen des Menschen, von wissenschaftlich und wirtschaftlich bedeutsamen Tieren, Pflanzen und Mikroorganismen.

Wählen Sie ein Thema

FÖRDERN

Das Österreichische Genomforschungsprogramm

AKTHER

21 10 2016

PhD Award

Das Programm

- → Programmmanagement
- → Förderungen
- → Technologietransfer
- → International
- → Timeline

FORSCHEN

Geförderte Projekte 2001-2006

KTUELL

68.10.2014

Call For Entries -Science, Art & Film Festival zur Synthetischen Biologie

Die Projekte

- → Aktuelle Projekte
- → Abgeschlossene Projekte
- → Institutionen
- → Personen
- → Publikationen

GEN-AU III

Dritte Phase von GEN-AU gestartet

Den Startschuss gaben Minister Hahn, Henrietta Egerth (FFG) und Giulio Superti-Furga (CeMM) bei einem Pressegespräch.

PORTRATSERIE PROJEKTLEITER

Wie bitte? Auch Pflanzen haben Stress?

Ein Interview mit GEN-AU Projektleiter und Pflanzenforscher Wolfram Weckwerth

GENOMFORSCHUNG IN ÖSTERREICH

Was ist GEN-AU?

Genomforschung ist eine Schlüsseltechnologie. GEN -AU fördert und vernetzt Forschung für Gesundheit in Österreich

PORTRATSERIE PROJEKTI EITER

Vakzinologie ist kein Penny-Markt

Die Impfstoffforscherin Eszter Nágy im Gespräch mit Bert Ehgartner

The Complex Inter-Relationships Shaping the Future of Healthcare

The Molecular Profiling of Human Diseases: Biomarkers, Biosignatures as the Foundation for Accurate Diagnosis and Rational Treatment Decisions

The Waste and Risk of Empirical Rx: Ignoring The Obvious in Clinical Practice

- diseases are not uniform
- patients are not uniform
- a "one-size fits all" Rx approach cannot continue

- inefficiency and waste of empirical Rx
- cost of futile therapy
- medical error and adverse events (AEs)

Disease Subtyping: Next-Generation Molecular Diagnostics (MDx) and A New Molecular Taxonomy of Disease

MDx Platforms

- massive parallelism
- miniaturization
- automation
- rapid
- · POC

RIGHT Rx for RIGHT DISEASE SUBTYPE

Molecular Diagnostics (MDx) The Convergence of Molecular Biology, Engineering and Computing

Complex Biosignature Profiling

Molecular Diagnostics (MDx) The Convergence of Molecular Biology, Engineering and Computing

Complex Biosignature Profiling

automated, high throughput multiplex assays novel test formats and devices for point-of-care (POC)

new algorithms for complex signal/deconvolution

From Pharmaceuticals to Pharmasuitables: Right Rx for the Right Disease (Subtype)

ID Molecular Targets for Rx Action

Disease Profiling to Identify Subtypes (+ or - Rx Target)

K-RAS Profiling and Anti-EGFR Monoclonal Antibody Therapy

clinical guidelines

- higher response in patients with K-RAS versus mutant-K-RAS
- estimated \$604 million/year savings (ASCO)

regulatory endorsement in product labeling

From Pharmaceuticals to Pharmasuitables: The Right Rx for the Right Patient

- Rx adverse events (AE) as major source of injury and death
- AEs due to genetic variation in drug transport and metabolism systems
 - fast and slow metabolizers
- AE due to drug interactions
 - action of one Rx in inhibiting metabolic capacity to handle second drug
- AE due to Rx and OTC drugs/supplements
 - latter not tracked

Mapping the Human Pan-Genome: Identification of Ethnic Differences and Implications for Rx Efficacy and Safety

From: Ruiqiang Li et al. (2010) Nature Biotech. 28, 59

We Are Not Alone: The Human Microbiome – A Barely Understood Factor in Human Health and Disease

- human body contains 10x more bacterial cells than human cells
- complex meta-system
 - host, microbes, viruses, other organisms, metabolites, xenobiotics
 - is there a core microbiome?
 - how do perturbations affect disease and vice-versa?
 - does the microbiome influence xenobiotic metabolism and the metabolite spectrum?

Mapping Genetic Predisposition to Disease

Nature (2010) 467, 832 Hundreds of variants clustered in genomic loci and

Mapping Human Diversity

"Our ignorance of the laws of variation is profound"

Charles Darwin

GCCME!CAGCATGCA CAGTGCAGCATGCAT CATGCAGME!GCACT TGCTAGCATGCATGA TCATGCAGTCATGCA

Mapping the Complexity of Genome Organization and the Cause of Multigenic Diseases

- recognition of increasing levels of organizational and regulatory complexity
 - haplotypes
 - CNV
 - indels
 - RNA universe
 - 'dark' elements
 - epistasis
 - epigenetics
 - nuclear compartmentalization and *trans*-expression
- impact of environmental factors
- gene-RX interactions

US Regulatory Action Against Direct-to-Consumer Genetic Testing

www.nature.com/ejhg

POLICY

Statement of the ESHG on direct-to-consumer genetic testing for health-related purposes

European Society of Human Genetics*

Whole Genome Sequencing

\$1000 Genomes

Evolution of Molecular Profiling and Diagnostics for Improved Disease Detection, Classification and Risk Evaluation

Global Population Demographics

(millions)

SOURCE: Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2008 Revision, http://esa.un.org/un.pp

The Disease Burden in Europe

Disease Category

- cardiovascular
- cancer
- tobacco
- obesity
- diabetes
- depression
- schizophrenia
- Parkinson's disease

Impact

4.3 million deaths/yr

1 in 3 men, 1 in 4 women

650,000 deaths/yr

30-80% adult population

246 million cases/3.8 million deaths/yr

23 million cases

1.5 million cases

800,000 cases, 75,000 new cases/yr

Urbanization

- 2 billion increase in world's urban population by 2030
- 90% of world's urban population will be in DCs by 2030
- 35% of current 3 billion urban residents reside in slums (UN-HABITAT)
- accelerating deterioration of physical and social wellbeing
- worsening morbidity and mortality for both communicable and non-communicable diseases
- polar demographics
 - aging urban populations in G8/OECD
 - record cohort of population younger than 25 yrs in DCs

Urbanization: A Bipolar World but Shared Risks

The Global Public Health Challenge Posed by Rapid Urbanization in Developing Countries

High Disease Transmission

Lack of Safe Water

Toxic Waste

Major Deficits in Health Infrastructure

Expanded Eco-niches and Increased Zoonotic Risks

Emerging Infections:

Global Transport and Trade: New Interactions of People, Animals and Product Supply Chains

The Super Vector

World Container Traffic Doubled Since 1997

Billion Cross-Border Travelers

Global Food Networks

Factors Driving the Evolution of Microbial Drug Resistance

Intensive Agriculture

Aquaculture

Empirical Rx

Poor Infection Control in Healthcare Facilities

Comfort and Complacency: The Enemies of Vigilance and Preparedness

The Growing Challenge Posed by Antimicrobial Drug Resistance (AMR)

NO ESKAPE

Enterococcus faecium
Staphylococcus aureus
Klebsiella Pneumoniae
Acinetobacter baumannii
Pseudomonas aeruginosa
Enterobacter species

New US-EU Task Force (2 Nov. 2009)

- encourage R&D on new antimicrobial drugs
- yet to be defined strategy/funding

The I0 X '20 Initiative (20 Nov. 2009)

 grand challenge to develop 10 new antibiotics by 2020

Multi-Country Program on AMR (12 Jan. 2010)

• **€ 12.4** million

Maintaining Global Preparedness for a High Virulence Pandemic

- H1N1: high transmissibility low virulence/mortality
- H5N1: low transmissibility high virulence/mortality
- H5N1 x (H1N1) or (X): potential for devastating pandemic

How Much New Technology Can We Afford?

UK National Institute for Health and Clinical Excellence (NICE)

NICE Gets Nasty (or Rational?)

The Infocosm: Emerging Networks of Global Connectivity

Informatics

Assembly, Integration and Analysis of Massive Data

- better diagnosis and treatment decisions (individuals)
- population data and evidence-based guidelines for best practices (health professionals)
- improved allocation of scarce/expensive resources (society)
- global health surveillance and risk reduction (global)
- acceleration of research discoveries and translation for improved care (academia, industry)

Sensor Networks for Remote Health Status Monitoring via Wireless Integrated Data Systems

- geolocation data (where)
- temporal information (when)
- contextual information (what)

On Body: In Body Sensors/Devices For Real Time and Remote Monitoring of Individual Health Status

m.Health

Remote
Health
Monitoring
and
Chronic
Disease
Management

Lifestyle and Fitness

Wireless Devices for Health Status Monitoring

TELCOMED

The Costs of Non-Compliance with Rx Regimens

- \$177 billion projected cost
- 20 million workdays/year lost (IHPM)
- 40% of nursing home admissions
- projected 45-75% non-compliance (WHO)
- 50-60% depressed patients (IHPM)
- 50% chronic care Rx (WHO)

Intelligent Medicine Dispensers for Enhanced Rx Compliance

Gaming for Health:

Wii Fit, Plus

Social Networks and Consumer: Patient Empowerment

In-Home Health Connection: Engaging the Elderly

A New Healthcare Ecosystem Arising From Technology and Market Convergence

Integrated Technology

Platforms

Data Mining Increasingly Targeted and Integration Care and Efficient Use of Finite Resources

Virtual Medicine Networks: Increasingly Integrated Care and Continuity of Care

Rx

- rapid, real time access to expertise
- broader range of clinical specialties
- integrated health records
- availability of lab and Rx lab data
- drug interactions risk
- electronic Rx prescribing

OTC

Consumer Health

- optimum use of 'wellness' products and
- databases on OTC product performance to accelerate Rx to OTC conversion for products that regulators would otherwise be reluctant to grant full OTC approval

e.Health, m.Health and Patient Empowerment

- greater access to information on treatment options
- generation-dependent ease and expectations for shared role in decisions
- new doctor-patient relationships
- new 'cultural' skills for healthcare professionals
 - less paternalism
 - patient education
- major gaps in professional familiarity and competencies in molecular medicine

European Journal of Human Genetics

Article

European Journal of Human Genetics 18, 972-977 (September 2010) | doi:10.1038/ejhg.2010.64

Genetic education and the challenge of genomic medicine: development of core competences to support preparation of health professionals in Europe

Heather Skirton, Celine Lewis, Alastair Kent and Domenico A Coviello

Global Disease Surveillance

Public Health Department's Surveillance

U.S. Influenza Sentinel Provider Surveillance Network

Quarantine Activity Reporting System (QARS).

The Global Surveillance Network of the ISTM and CDC

a worldwide communications & data collection network of travel/tropical medicine clinics

Geodemographic Information Systems (GIS): Real-Time, Front Line, Ground Zero Data from Field Sampling and Sentinels

Geo-demographic Information Systems: Mapping Disease Patterns and Modeling Trends

Satellite Surveillance and Predictive Modeling of Disease Trends

Wireless Sensors and Systems for Improved Agricultural Productivity

Data: The Fastest Growing Resource on Earth

"Managing Mega-Data": (Who Knows Wins)

volume

scale

heterogeneity

integration

Standards for 'Omics' Data Cross-Domain Integration, Open-Source Data Sharing and Computational Analysis

OBO Foundry Ontologies Nature Biotechnology 25, 1251 - 1255 (2009)

Foundational Model of Anatomy

ZFIN
Zebrafish Anatomical Ontology

Disease Ontology (DO)

Plant Ontology (PO)

Ontology for Clinical Investigations (OCI)

Common Anatomy Reference Ontology

Ontology for Biomedical Investigations

Phenotypic Quality Ontology (PATO)

OBO Relation Ontology

RNA Ontology (RnaO)

Privacy and Health Information

• 2010: 15 Petabits (1016) / \$250,000

Human Genome: 10 Gigabits (10¹¹)

For a few million dollars, one could store the complete genome of every American and European

...for several more, could add credit card records, telephone logs, travel history,...

Enhancing Human Capabilities to Use the Increased Volume, Diversity and Complexity of Information Flows

Cognitive Biology, Customized Data Formats and Visualization for Improved Decision-Making

Transcending Boundaries: Emergent Domains Arising from Technology Convergence

Mapping Biological Control Circuits and the Expanded Dimension of the Chem-Bio (CB) Challenge

- thinking beyond 'bio' as just infectious agents (bugs)
- systems biology
 - targeted disruption of ANY body function
 - novel CB threats
- synthetic biology
 - exploring biospace: designing new life forms
 - designer organisms to attack materials/infrastructure

The Accelerating Convergence of Neurobiology with Advances In Engineering and Computing

- "Brains on Target": Bio-Info-Cognitive (BIC) technologies
- "Borg Drift": On-Body/In-Body (OBIB) devices and brain: computer interface technologies

New Strategic Technology 'Spaces' Created by Technology Acceleration and Convergence

Systems and Synthetic Biology

Ubiquitous Sensing

Infocosm and the Metaverse

Dual-Use Technologies

Education and Research

"Bio-Space"

"Monitored Space"

"Networked Space"

"Controlled Space"

"Aspirational Space"

New Strategic Technology 'Spaces' Created by Technology Acceleration and Convergence

"Bio-Space"

Ubiquitous Sensing

"Monitored Space"

Infocosm and the Metaverse

"Networked Space"

Dual-Use Technologies

"Controlled Space"

"Aspirational Space"

Rapidly Changing and Evolving Multi-dimensional Matrices of Knowledge Ecologies

Innovation Systems

Organization of Research

Dangerous Assumptions

- the future will be similar to the recent past
- policy makers understand the forces that are driving ever-faster disruptive changes
- national governance institutions, laws and regulations are adapting to the accelerating pace of discovery and globalization of technology

The Complex Inter-Relationships Shaping the Future of Healthcare

The Complex Inter-Relationships Shaping the Future of Healthcare

wellness: predict and prevent disease versus diagnose and treat

sustainable health: wellness + economic thresholds for acceptable 'outcomes'

reducing risk: remote health monitoring + personal acountability

knowledge networks: distributed information systems for smarter decisions and better use of scarce/expensive resources

The Future of Academic Biomedical Research: Adaptive Agility or Denialism and Decline?

- myriad inefficiencies arising from the organization and performance of academy and its funders
- single discipline specialization creates isolated silos
- hubris of dangerous belief in perceived competency in an era of dramatic change
- reward systems (internal promotion, external funding) weighted to individual versus team performance
- scale, cost and logistical complexity of multidimensional
- multidisciplinary projects and funding policies
- proficient translation of academic discoveries to productive use requires expanded academy-industry interactions
- imperative for new cross-disciplinary curricula and training

Ce—M—M— Research Center for Molecular Medicine of the Austrian Academy of Sciences

