

Health Technology Acceleration and Convergence: Implications for Personalized Medicine

Dr. George Poste
Chief Scientist, Complex Adaptive Systems Initiative
Del E. Webb Chair in Health Innovation
Arizona State University

george.poste@asu.edu

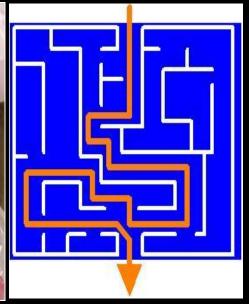
Keynote Address at 5th Annual Burrill Personalized Medicine Meeting San Francisco, CA, 9 November 2009

Reasonable Expectations for Rational Healthcare

- what works
- why it works
- who it works for
- what works best
- when should it be used optimally

- validated evidence
- mechanism of action
- personalized medicine
- comparative effectiveness
- best practice guidelines, standard-of-care and malpractice

Major Challenges in Healthcare



Major Challenges in Healthcare

Inefficient
Use of
Information

Fragmented
Care Versus
Integrated Care

Duplication,
Defensive
Medicine & Waste

Protracted Adoption of Innovation

New Value Propositions in Healthcare

- social and economic value of reducing disease burden will rise
 - earlier disease detection and mitigation
 - rational Rx and guaranteed outcomes
 - integrated care management of complex chronic diseases
 - extension of working life
- progressive shift from 'reactive' medicine to 'proactive' care and 'integrated' delivery
 - prospering in an era of increasing constraints
 - managing the limit(s) of society's willingness and ability to pay for innovation

Dominant Themes in Biomedical R&D

- technology acceleration
- technology convergence
- new cross-disciplinary, cross sector partnerships
- data standards
- data volume
- data diversity and integration
- information infrastructure

Dominant Themes in Biomedical R&D

- technology acceleration
- technology convergence
- new cross-disciplinary, cross sector partnerships
- data standards
- data volume
- data diversity and integration
- information infrastructure

scale

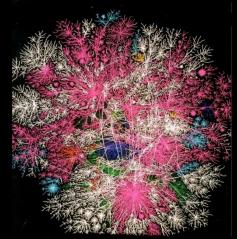
complexity

networks

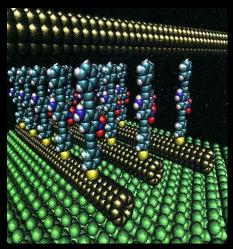
Dominant Themes in Biomedical R&D

- technology acceleration
- technology convergence
- new cross-disciplinary, cross sector partnerships
- data standards
- data volume
- data diversity and integration
- information infrastructure

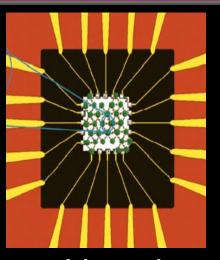
scale


complexity

networks


The Strategic Triad:

diagnostics (Dx), therapeutics (Rx) and informatics (Ix)


Technology Convergence

Biotechnology, Systems Biology and Synthetic Biology

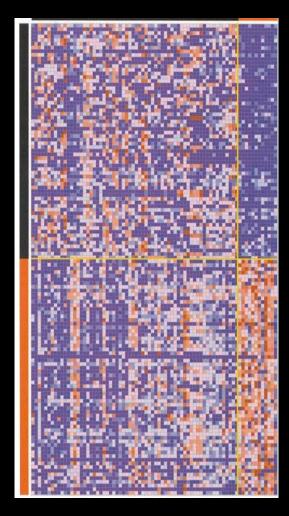
Nanotechnology
Materials Science
and
Miniaturization
Engineering

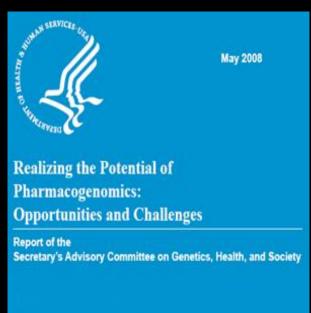
Advanced
Computing
and
Knowledge
Management

 technologies with radical, pervasive and enduring impact

Integration of Dx, Rx and HIx

Personalized Medicine: Progressive Evolution Based on Increasingly Comprehensive Profiling of Disease Risk and Health Status




Individualized Care

Personalized Care

- rational Rx based on profiling of underlying molecular pathology
- MDx and disease subtyping
- rational Rx based on comprehensive molecular profiling of individuals
 - disease subtypes and optimum Rx
 - Rx AE risk
 - disease predisposition risk and mitigation
- integrated framework of care and longitudinal data on individual health status
- real time remote health status monitoring
- transition to disease prediction and preemption

Personalized medicine: Key Drivers

Science

Policy

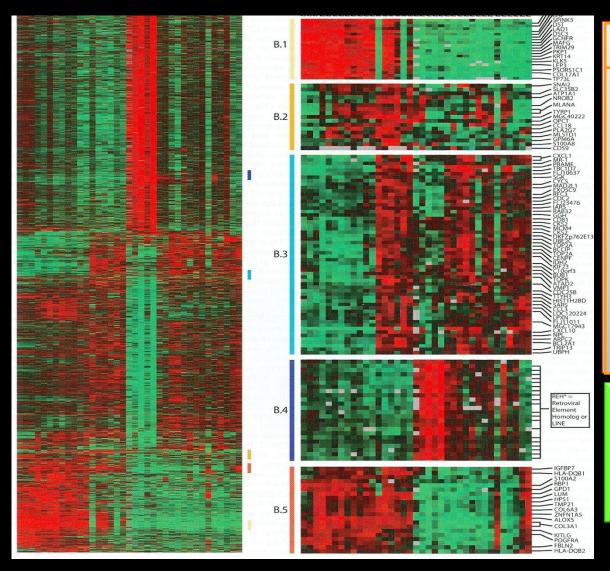
Cost and Outcomes

K-RAS Profiling and Anti-EGFR Monoclonal Antibody Therapy

- higher response in patients with K-RAS versus mutant-K-RAS
- estimated \$604 million/year savings (ASCO)

clinical guidelines

regulatory endorsement in product labeling



payor adoption

Disease Subtyping: Next-Generation Molecular Diagnostics (MDx) And a New Molecular Taxonomy of Disease

Dx Platforms

- massive parallelism
- miniaturization
- automation
- rapid
- · POC

RIGHT Rx for RIGHT DISEASE SUBTYPE

The Emergence of Drug: Diagnostic Combinations

Bristol-Myers Squibb

Verigene® System

Pfizer

Molecular Medicine and Rational Therapeutics: Targeted Rx and Rise of Molecular Diagnostics and Patient Profiling

- opening era in linking disease molecular pathology to rational Rx
- increasing payor, regulatory and public pressures for reliable ID of Rx-responsive patients
- demand for Dx-Rx combinations will intensify
- Dx-Rx combination will become an obligate element of NDA/BLA submission and product labeling
- development of Dx-Rx combinations as intrinsic components of R&D programs for investigational Rx

Outcomes-Based Risk-Sharing Agreements (OBRAs)

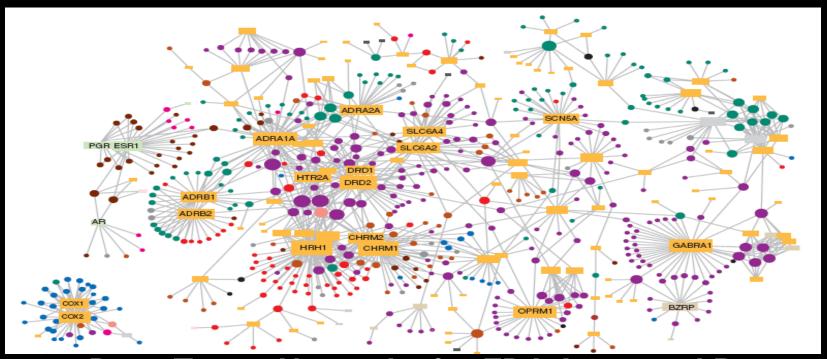
UK: National Health Service

full or partial refund for non-responders

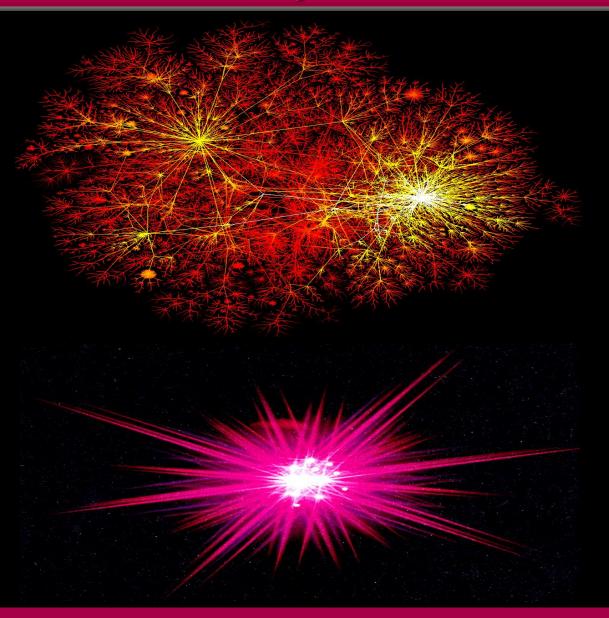
- four Rx cycles
- 50% reduction in serum M protein
- NHS continues to fund
- <50% response company refunds cost of Rx

Outcomes-Based Risk-Sharing Agreements (ORBAs) Come to the USA

sanofi aventis



- reimburse average treatment cost (not just Rx) for fractures incurred after 6 months therapy
- improved Hb1Ac levels in diabetics over one year increases Rx discount to Cigna

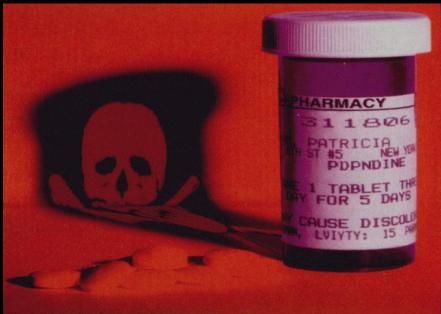

The Conceptual Foundations of Drug Discovery

- from empiricism to rational therapeutics
- from ambiguity to predictability
 - mechanism(s) of action
 - clinical efficacy and safety
 - healthcare outcomes and value

Drug-Target Networks for FDA Approved Rx

Molecular Pathways and Network Analysis: Systems Pharmacology

Deconvolution of Signaling Networks in Disease


Identification
of
'Fragile'
Nodes/Pathways
for
Targeted Rx

Molecular Pathways Network Analysis and Systems Pharmacology

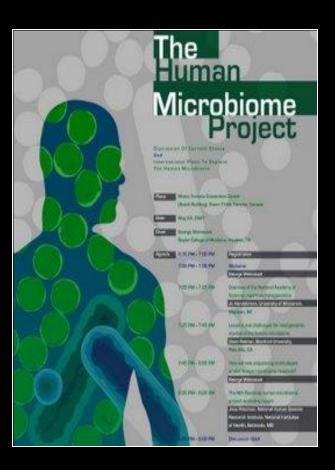
- 'connectivity' maps
 - correlations between genomic signatures and sets of proteins involved in Rx action
- Rx 'promiscuity'
 - spectrum of 'target' effects required for optimum efficacy
- Rx 'pleiotropy'
 - undesirable off-target effects and adverse event risk
- 'synthetic lethal' screening
 - ID new Rx oncology targets in co-dependent genes required for cell survival
- 'minimum knockout' modeling
 - ID/predict smallest number of drug targets to fully block a cellular process

Pharmacogenetic Predisposition to Adverse Drug Reactions

- 1.5 to 3 million annual hospitalizations (US)
- 80 to 140 thousand annual deaths (US)
- est. cost of \$30-50 billion

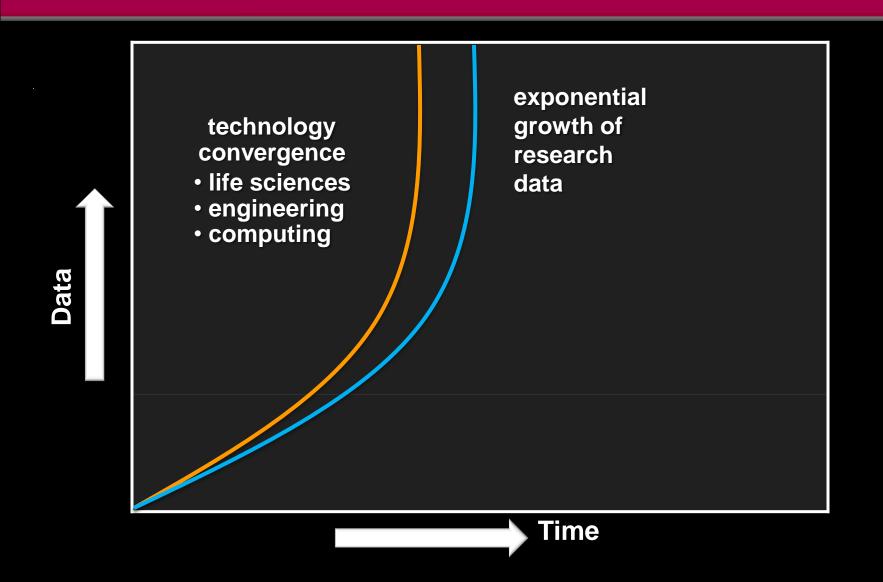
Alert 7/24/08

 update labeling for Abacavir (Ziagen) to require pre-therapy screening for HLA-B*5701 allele to avoid fatal hypersensitivity

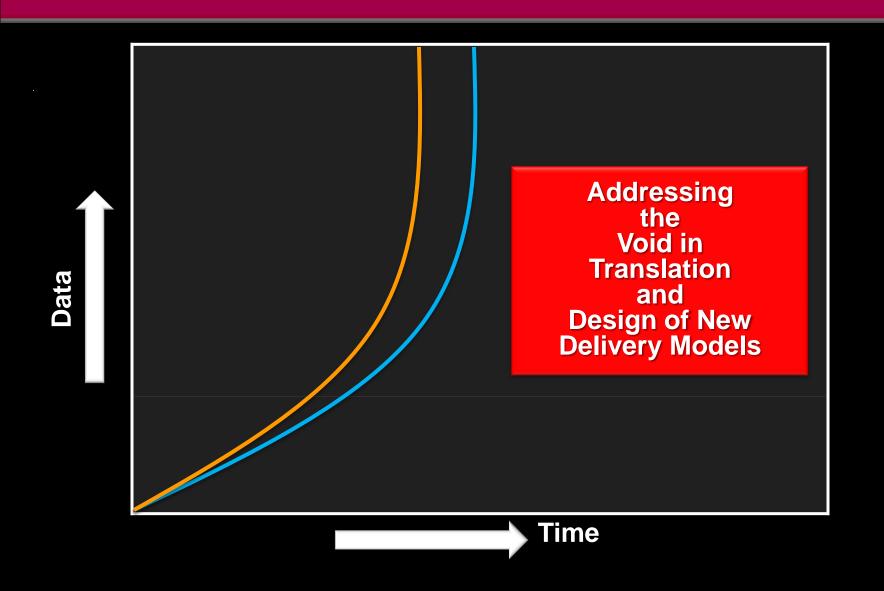

Table of Valid Genomic Biomarkers in the Context of Approved Drug Labels

http://www.fda.gov/cder/genomics/genomic_biomarkers_table.htm

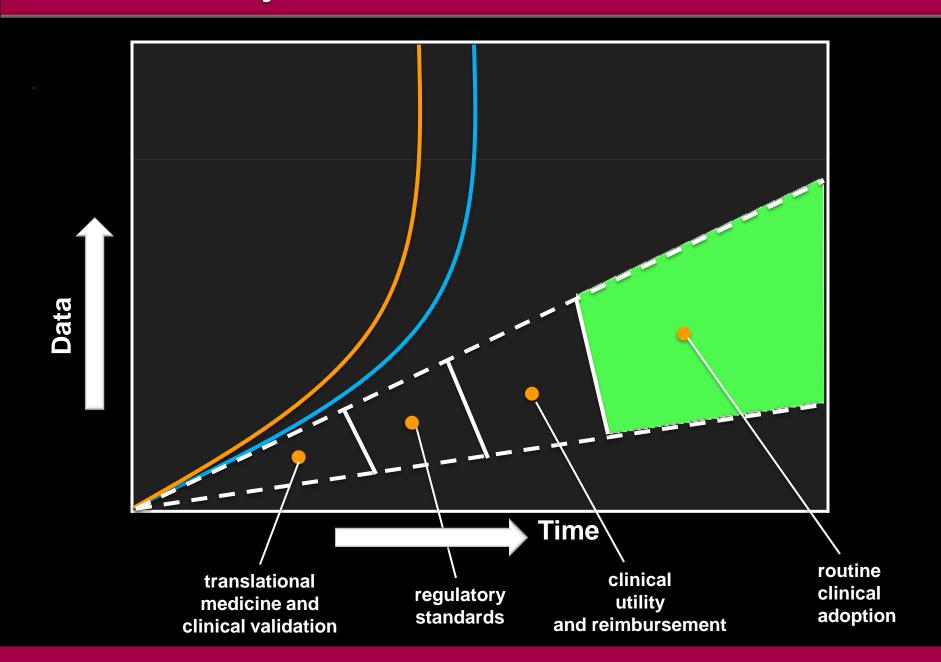
Molecular Diagnostics and Pharmacogenetic Profiling to Identify Individuals at Risk for Rx Adverse Events


- broader, more complex profiling platforms than MDx assays for ID of drug targets
- ID of slow metabolizer genotypes
- unknown effects of genetic and environmental confounders in AD(M)E beyond genetic variation in drug-metabolism (I-III) repertoire
- complex patterns of ethnic variation and haplotype associations impose continuum of metabolic phenotypes

The Human Microbiome: A Barely Understood Influence in health



- complex meta-system
 - host, microbes, viruses, other organisms, metabolites, xenobiotics
 - is there a core microbiome?
 - how do perturbations affect disease and vice-versa?
 - does the microbiome influence xenobiotic metabolism and the metabolite spectrum?


The Trajectories for Molecular Medicine

The Trajectories for Molecular Medicine

The Trajectories for Molecular Medicine

Adoption of New Technologies in Healthcare

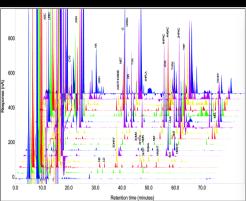
- not merely innovation in technology
- parallel evolution and adoption of new business, financial and organizational models
- harmonizing incentives for diverse constituencies
- critical role of public policies in defining market entry barriers
 - regulation, reimbursement
 - professional standards and sustaining status quo
 - changes in administrative procedures
- cost-based, event-/procedure-based incentives versus value-based pricing, integrated care and disease management

The Evidence Dilemma in Adoption of Next-Generation Molecular Diagnostic Tests and the Evolution of Personalized Medicine

"The stark reality is that although academic conception of new biomarkers is fertile, their gestation is generally interminable"

Dr. Janet Woodcock FDA Clin. Pharm. Therap. (2009) 86, 13

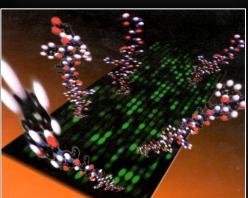
Deriving Value from "-Omics"

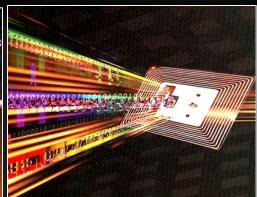

- useful only when correlated with additional parameters
 - clinical outcomes
 - clinical utility
 - actionable information
 - demonstrable economic value

Disease-Associated Biomarkers

- literature dominated by anecdotal studies
 - academic laboratories
 - small patient cohorts
 - poor replication and confirmatory studies
- lack of standardization
- very few biomarkers subjected to rigorous validation
 - case-control studies with sufficient statistical power
 - inadequate stringency in clinical phenotyping
- widespread lack of understanding of regulatory requirements
 - complexities imposed by multiplex tests
 - new regulatory oversight (IVDMIAs)

Identification and Validation of Disease-Associated Biomarkers: Obligate Need for a Systems-Based Approaches





Biospecimens and Molecular Pathway Analysis

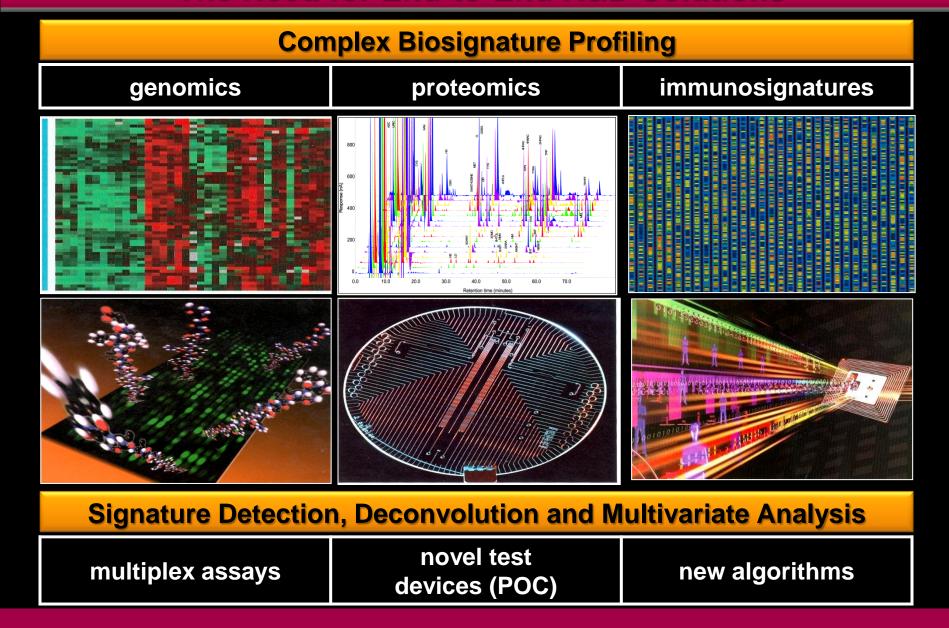
Biomarker Validation and Multiplex Assays

Instrumentation and Informatics

Clinical Impact and Patient Monitoring

The Imperative for Rigorous Clinical Sampling Protocols in Biomarker Profiling and Validation of IVD Tests

- statistical powering
- rigorous case-control studies
 - retrospective
 - prospective (piggy back on clinical trials)
- prospectively defined endpoints
 - diagnostic marker(s)
 - Rx responsiveness and resistance markers
 - staging, stratification, progression markers
- regulatory validation of software algorithms for multiplex tests


Sample Sizes Required to Render False Positive Results Unlikey When Testing Association Between a Genetic Variant and Cancer

Genetic relative risk†	Probability of association	Sample size for cases‡
1.25	0.001	2128
	0.0001	2580
	0.00001	3026
1.15	0.001	5789
	0.0001	7022
	0.00001	8234

from: S.G. Baker et al. (2006) BMJ 332, 1150

- *Based on a two sided type I error of 0.05, a power of 0.90, and a false positive report probability of 0.05
- †Relative risk of cancer in people with genetic variant compared with those without.
- **‡An equal number of controls is also needed.**

Development of Molecular Diagnostics and Biomarkers for Personalized Medicine: The Need for End-to-End R&D Solutions

Increased Legislative Interest in Standards, Oversights and Regulation of Molecular Diagnostic Testing

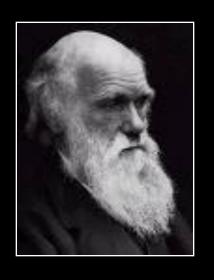
 (2008) In Vitro Diagnostic Multivariate Index Assays (IVDMIAs)

 (2009) Quality, Regulation and Clinical Utility of Laboratory-Developed Tests

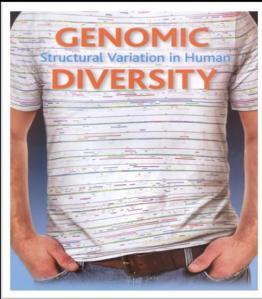
 (2009) Good Laboratory Practices for Molecular Genetic Testing for Heritable Diseases and Conditions

 (2009) Secretary's Advisory Committee on Genetics, Health and Society (SACGHS)

• (2009) SB 42: Post-CLIA Bioinformatics Services


Ominous Signal?

"Under the current CLIA framework, only the analytical validity of the test is assessed, while the clinical validity and clinical utility of the test are not"


DHSS Agency for Healthcare Quality and Research Report on Laboratory Developed Tests September 2009

Mapping Genetic Variation and Identification of Gene Loci Associated with Complex Human Diseases

"Our ignorance of the laws of variation is profound"

Charles Darwin

GCCME!CAGCATGCA CAGTGCAGCATGCAT CATGCAGME!GCACT TGCTAGCATGCATGA TCATGCAGTCATGCA

Mapping the Allelic Architecture of Common Traits and Gene Constellations for Disease Predisposition and Progression

family-based linkage studies and 'candidate genes'

SNPs, haplotypes and genome-wide association studies (GWAS)

- common variants confer small risk increments (OR 1.1 to 1.5)
- explain only small component of disease risk
- majority of associated loci in intronic and inter-genic regions of unknown function
- relationship of CNVs to associated loci yet to be defined

 focus on larger number of variants with low minor allele frequencies (MAF) and smaller effects

Mapping the Allelic Architecture of Common Traits and Gene Constellations for Disease Predisposition and Progression

family-based linkage studies and 'candidate genes'

SNPs, haplotypes and genome-wide association studies (GWAS)

- common variants confer small risk increments (OR 1.1 to 1.5)
- explain only small component of disease risk
- majority of associated loci in intronic and inter-genic regions of unknown function
- relationship of CNVs to associated loci yet to be defined

 focus on larger number of variants with low minor allele frequencies (MAF) and smaller effects

comprehensive exome and whole genome sequencing

Daunting Scale, Time and Cost of Comprehensive Mapping of Loci Associated with Complex Human Diseases

- high cost GWAS studies on few thousand individuals
 - largely uninformative in identification of the collective actions of multiple rare alleles with individual weak effects
- very large sample sizes needed for adequate statistical power to identify low frequency loci
 - 200,000 500,000 (\$1-3 billion)
- skepticism that coarse-grained nature of routinely collected clinical/lab/billing metrics are insufficient to establish research-quality phenotypes for robust correlative whole genome sequencing

The Imperative for New Initiatives to Establish Large Scale, Standardized Scientific and Clinical Resources for Translational Research

The Rise of Big Biology: Nature Genetics (September/October 2009)

Genetic variant near *IRS1* is associated with type 2 diabetes, insulin resistance and hyperinsulinemia

lohan Rung^{1,28,29}, Stéphane Cauchi^{2,29}, Anders Albrechtsen^{3,29}, Lishuang Shen^{1,28}, Ghislain Rocheleau^{1,4,28}, Christine Cavalcanti-Proença², François Bacot¹, Beverley Balkau⁵, Alexandre Belisle¹, Knut Borch-Johnsen⁶, Guillaume Charpentier⁷, Christian Dina², Emmanuelle Durand², Paul Elliott⁸, Samy Hadjadj⁹, Marjo-Riitta Järvelin^{6,10}, Jaana Laitinen¹¹, Torsten Lauritzen¹², Michel Marre¹³, Alexander Mazur¹, David Meyre², Alexandre Montpetit¹, Charlotta Pisinger¹⁴, Barry Posner^{15,16}, Pernille Poulsen⁶, Anneli Pouta^{8,17}, Marc Prentki¹⁸, Rasmus Ribel-Madsen⁶, Aimo Ruokonen¹⁹, Anelli Sandback¹², David Serre^{1,28}, Jean Tichet¹⁹, Martine Vazillaire², lorgen F P Wojtaszewski²¹, Allan Vaag^{6,22}, Torben Hansen^{2,3,24}, Constantin Polychronakos^{4,25}, Oluf Pedersen^{23,26}, Philippe Froguef^{2,27} & Robert Sladek^{1,4,15}

Genome-wide association study identifies variants in the *ABO* locus associated with susceptibility to pancreatic cancer

Laufey Amundadottir^{1,2,55}*, Peter Kraft^{1,4,55}*, Rachael Z Stolzenberg-Solomon^{2,55}*, Charles S Fuchs^{5,6,55}*, Gloria M Petersen⁷, Alan A Arslan^{4–10}*, H Bas Bueno-de-Mesquital¹*, Myron Gross^{1,2}*, Kathy Helzlsouer¹*, Eric J Jacobs¹⁴*, Andrea LaCroix^{1,5}*, Wei Zheng¹⁶*, Demetrius Albanes²*, William Bamlet⁷*, Christine D Berg¹⁷*, Franco Berrino¹⁸*, Sheila Bingham¹⁹*, Julie E Buring^{20,21}*, Paige M Bracci²²*, Federico Canzian²³*, Françoise Clavel-Chapelon²⁴*, Sandra Clipp²⁵*, Michelle Cotterchio²⁶*, Mariza de Andrade⁷*, Eric J Duell²⁷*, John W Fox Jre⁸*, Stevan Gallinger²⁹*, J. Michael Gaziano³⁶*, Edwictorios³⁶*, Michael Goggins²²*, Carlos A González²³*, Göran Hallmane³⁴*, Susan E Hankinson^{3,6}*, Manal Hassan³⁵*, Elizabeth A Holly²²*, David J Hunter^{3,6}*, Amy Hutchinson^{2,56}*, Rebecca Jackson¹⁷*, Kevin B Jacobs^{2,36,36}*, Mazda Ienab²⁷*, Rudolf Kaaks²⁸*, Alison P Klein^{38,40}*, Charles Kooperberg¹⁵*, Robert C Kurtz⁴*, Donghui Li²³*, Shannon M Lynch⁴²*, Margaret Mandelson^{15,43}*, Robert R McWilliams⁴⁴*, Julie B Mendelsohn²*, Omninique S Michaud^{34,45}*, Sara H Olson⁴⁶*, Kim Overvad⁴⁷*, Alpa V Patell⁴⁴*, Petra H M Peeters^{45,46}*, Aleksandar Rajkovic⁴⁰*, Elio Riboli⁴⁵*, Harvey A Risch³⁰*, Xiao-Ou Shu¹⁶*, Gilles Thomas²*, Geoffrey S Tobias²*, Dimitrios Trichopoulos^{3,51}*, Stephen K Van Den Eeden³²*, Jarmo Virtamo³⁵*, Jean Wactawski-Wende⁵⁴*, Patricia Hartge^{2,55}* & Robert N Hower^{2,55}*

Genome-wide association study identifies variants at *CLU* and *CR1* associated with Alzheimer's disease

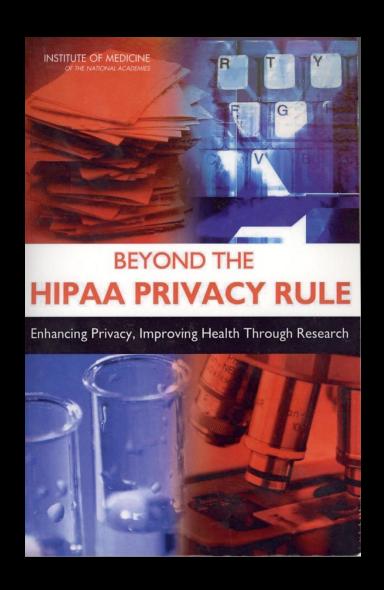
Jean-Charles Lambert¹⁻³, Simon Heath⁴, Gael Even^{1,2}, Dominique Campion⁵, Kristel Sleegers^{6,7}, Mikko Hiltunen⁶, Onofre Combarros⁶, Diana Zelenika⁴, Maria i Bullido¹9, Béstrice Tavernier¹¹, Luc Letenneur^{1,2}, Karolien Bettens^{6,7}, Claudine Bert^{1,3}, Florence Pasquier^{3,14}, Nathalie Fiévet^{1,2}, Pascale Barberger-Gateaul^{1,3}, Sebastiana Engelborghs^{7,15}, Peter De Deyrn^{1,5}, Ignacio Mateo³, Ana Franch⁴, Seppo Helisalmi⁶, Elisa Porcellini¹⁷, Olivier Hanoni¹⁸, the European Alzheimer's Disease Initiative Investigators¹⁹, Marian M de Pancorbo³⁰, Corinne Lendon²¹, Carole Dufouii^{12,23}, Celine Jaillard²³, Thierry Leveillard²⁴, Victoria Alvarez²⁵, Paola Bosso⁵⁶, Michelangelo Mancuso⁵⁷, Francesco Panza¹⁸, Benedetta Nacmias⁵⁷, Paola Bosso⁵⁸, Paola Piccardi³¹, Giorgio Annoni³², Davide Seripa³³, Daniela Galimberti⁴¹, Didier Hannequin⁵, Federico Licastro¹⁷, Hilka Soininen⁶, Karen Ritchie¹³, Hélène Blanche⁵⁶, Jean-François Dartigues¹⁵, Christophe Tzourio^{22,25}, Ivo Cut⁴, Christine Van Broeckhoven⁶⁷, Annick Alpérovitch^{22,23}, Mark Lathrop⁴⁵, & Philippe Amouyel^{1–3,14}

Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility

Julius Gudmundsson^{1,21}, Patrick Sulem^{1,21}, Daniel F Gudbjartsson¹, Thorarinn Blondal¹, Arnaldur Gylfason¹, Bjarni A Agnarsson^{2,3}, Kristrun R Benediktsdottir³, Droplaug N Magnusdottir¹, Gudbjorg Orlygsdottir¹, Margret Jakobsdottir¹, Simon N Staccy¹, Asgeir Sigurdsson¹, Tiina Wahlfors⁴, Teuvo Tammela⁵, Joan P Breyer⁶, Kate M McReynolds⁶, Kevin M Bradley⁶, Bertu Saez^{7,6}, Javier Godino⁷, Sebastian Navarrete⁶, Fernando Fuertes⁹, Laura Murillo¹⁰, Eduardo Polo¹¹, Katja K Aben^{12,13}, Inge M van Oort¹⁴, Brian K Suarez¹⁵, Brian T Heffand¹⁶, Donghui Kan¹⁶, Carlo Zanon^{1,17}, Michael L Frigge¹, Kristleifur Kristjansson¹, Jeffrey R Gulcher¹, Gudmundur V Einarsson ⁸, Eirikur Jonsson¹⁸, William J Catalonal⁶, Jose I Mayordomo^{7,8,19}, Lambertus A Kiemeney^{12–14}, Jeffrey R Smith^{6,20}, Johanna Schleutker⁴, Rosa B Barkardottir², Augustine Kong¹, Unnur Thorsteinsdottir^{1,3}, Thorunn Rafnar¹ & Kari Stefansson^{1,3}

A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2

Honglin Song^{1,43,*}, Susan J Ramus^{2,43}, Jonathan Tyrer¹, Kelly L Bolton^{1,3}, Aleksandra Gentry-Maharaj², Eva Wozniak2, Hoda Anton-Culver4, Jenny Chang-Claude5, Daniel W Cramer6, Richard DiCioccio7, Thilo Dörk8, Ellen L Goode9, Marc T Goodman10, Joellen M Schildkraut11, Thomas Sellers12, Laura Baglietto 13,14, Matthias W Beckmann 15, Jonathan Beesley 16, Jan Blaakaer 17, Michael E Carney 10, Stephen Chanock³, Zhihua Chen¹², Julie M Cunningham⁹, Ed Dicks¹, Jennifer A Doherty¹⁸, Matthias Dürst¹⁹, Arif B Ekici20, David Fenstermacher12, Brooke L Fridley9, Graham Giles13,14, Martin E Gore21, Immaculata De Vivo²², Peter Hillemanns⁸, Claus Hogdall²³, Estrid Hogdall²⁴, Edwin S Iversen²⁵, Ian J Jacobs², Anna Jakubowska²⁶, Dong Li⁴, Jolanta Lissowska²⁷, Jan Lubiński²⁶, Galina Lurie¹⁰, Valerie McGuire²⁸, John McLaughlin²⁹, Krzysztof Medrek²⁶, Patricia G Moorman¹¹, Kirsten Movsich³⁰, Steven Narod³¹, Catherine Phelan¹², Carole Pye¹, Harvey Risch³², Ingo B Runnebaum¹⁹, Gianluca Severi^{13,14}, Melissa Southey33, Daniel O Stram34, Falk C Thiel15, Kathryn L Terry6, Ya-Yu Tsai12, Shelley S Tworoger22 David J Van Den Berg34, Robert A Vierkant9, Shan Wang-Gohrke35, Penelope M Webb16, Lynne R Wilkens10, Anna H Wu34, Hannah Yang3, Wendy Brewster36, Argyrios Ziogas4, Australian Cancer (Ovarian) Study37, The Australian Ovarian Cancer Study Group³⁷, The Ovarian Cancer Association Consortium³⁸, Richard Houlston 38, Ian Tomlinson 39, Alice S Whittemore 28, Mary Anne Rossing 18, Bruce A J Ponder 1, Celeste Leigh Pearce34, Roberta B Ness40, Usha Menon2, Susanne Krüger Kjaer24, Jacek Gronwald26, Montserrat Garcia-Closas¹⁷, Peter A Fasching^{15,41}, Douglas F Easton⁴², Georgia Chenevix-Trench¹⁶, Andrew Berchuck¹¹, Paul D P Pharoah¹ & Simon A Gayther²


Genome-wide association study identifies 19p13.3 (*UNC13A*) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis

Michael A van Es^{1,38*}, Jan H Veldink^{1,38}, Christiaan G J Saris¹, Hylke M Blauw¹, Paul W J van Vught¹, Anna Birve², Robin Lemmens^{5,5}, Helenius J Schelhaas⁶, Ewout J N Groen¹, Mark H B Huisman¹, Anneke J van der Kooi⁷, Marianne de Visser⁷, Caroline Dahlberg², Karol Estrada⁸, Fernando Rivadencira^{8,9}, Albert Hofman⁹, Machiel J Zwarts⁶, Perry T C van Doormaal¹, Dan Rujescu¹⁰, Eric Strengman¹¹, Ina Giegling¹⁰, Pierandrea Muglia¹², Barbara Tomik¹³, Agnieszka Słowik¹³, Andre G Uitterlinden^{8,9}, Corinna Hendrich¹⁴, Stefan Waibel¹⁴, Thomas Meyer¹⁵, Albert C Ludolph¹⁴, Jonathan D Glass¹⁶, Shaun Purcell¹⁷, Sven Cichon^{18,19}, Markus M Nöthen^{18,19}, H-Erich Wichmann^{20–22}, Stefan Schreiber^{23,24}, Sita H H M Vermeulen²⁵, Lambertus A Kiemeney^{26,27}, John H J Wokke¹, Simon Cronin^{28,29}, Russell L McLaughlin^{29,30}, Orla Hardiman^{29,30}, Katsumi Fumoto³¹, R Ieroen Pasterkamp³¹, Vincent Meininger³², Judith Melki³³, P Nigel Leigh³⁴, Christopher E Shaw³⁴, John E Landers^{55,36}, Ammar Al-Chalabi³⁴, Robert H Brown Jr^{35,36}, Wim Robberecht²⁻⁵, Peter M Andersen², Rod A Ophofi^{1,17} & Leonard H van den Berg¹

Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease

Denise Harold^{1,45°}, Richard Abraham^{1,45}, Paul Hollingworth^{1,45}, Rebecca Sima¹, Amy Gerrish¹, Marian I. Hamsbere¹, Jaspreet Singh Pahwa¹, Valentina Moskvina¹, Kimberley Dowzell¹, Amy Williams¹, Nicola Jones¹, Charlene Thomas¹, Akzandra Stretton¹, Anghard R Morgan¹, Simon Lowestone², John Powell⁹, Petroula Proitsi², Michelle K Lupton², Carol Brayne⁴, David C Rubinsztein², Michel Gill⁶, Brian Lawlor⁶, Aoibhian Lynch⁶, Kevin Morgan⁷, Kristelle S Brown⁷, Peter A Passmore⁸, David Craig⁸, Bernadette McGuinness⁸, Stephen Todd⁸, Clive Holmes⁸, David Mann¹⁰, A David Smith¹¹, Seth Lowi¹², Patrick G Kehoe ¹², John Hardy¹³, Simon Mead¹⁴, Nick Fox¹³, Martin Rossor¹³, John Collinge¹⁴, Wolfgang Maier¹⁶, Frank Jessen¹⁶, Britta Schttrmann¹⁶, Hendrik van den Bussche¹⁷, Isabella Heuser¹⁸, Johnse Kornhuber¹⁷, Jens Wiltfang²⁰, Martin Dichgang^{21,22}, Lutz Frölich²³, Harald Hampel^{24,25}, Michael Holl²⁶, Dan Rujescu²⁵, Alison M Goate²⁷, John S K Kauwe²⁸, Carlos Cruchaga²⁷, Petra Nowotny²⁷, John C Morris²⁷, Kevin Mayo²⁷, Kristel Sleegers^{29,10}, Sarolien Betters^{29,20}, Sebatiana Engelborghy^{50,21}, Peter P De Deyn^{50,3}, Christine Van Brow²⁸, Gester Scholagers^{29,20}, Gill Livingston²⁹, Nicholas J Bass², Hugh Gurling²², Andrew McQuillin²², Rhian Gwilliam²³, Panagiotis Deloukas²³, Ammar Al-Chalabis³, Christopher E Shae³, Magda Tsoladis²⁹, Andrew B Singleton³⁸, Rita Guerreiro³⁸, Thomas W Muhleisen^{27,38}, Markus M Nöthen^{37,38}, Susanne Moebus³⁷, Karl-Heinz Jöckel¹⁷, Norman Hoopp⁴⁰, H-Erich Wichmann^{41,41}, Owen ³, Lujie William⁵³, Vishane Pankratz⁴⁴, Steven G Younkin⁴³, Peter A Holmans¹, Michoel O'Donovan¹, Mikhel J Owen ³ & Julie William³

IOM Committee on Health Research and the Privacy of Health Information (2009)

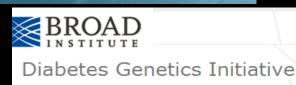
- HIPAA fails to protect privacy and impedes research
- consent does not protect against security breaches
- proposal that research be exempt from HIPAA
- adopt prior federal standard for human subjects research: The Common Rule
- eliminates need for reconsent and reauthorization for future and use of sample/data

Standards for 'Omics' Data Cross-Domain Integration, Open-Source Data Sharing and Computational Analysis

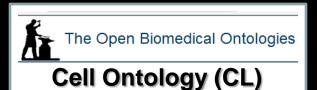
The Rise of Open-Source Networks and Consortia

Entrez, The Life Sciences Search Engine

FDA/Severe Adverse Events (SAE) Consortium



The Neurocommons



Genes, Environment and Health Initiative (GEI)

Clinical Semantics Group

OBO Foundry Ontologies Nature Biotechnology 25, 1251 - 1255 (2009)

the Gene Ontology **Gene Ontology (GO)**

Foundational Model of Anatomy

ZFIN **Zebrafish Anatomical Ontology**

ACHEBI Chemical Entities of Biological Interest (ChEBI)

Disease Ontology (DO)

Plant Ontology (PO)

Ontology for Clinical Investigations (OCI)

Common Anatomy Reference Ontology

Ontology for Biomedical Investigations

Phenotypic Quality **Ontology (PATO)**

Protein Ontology (PRO)

OBO Relation **Ontology**

RNA Ontology (RnaO)

Changing the Sociology of the Life Sciences and Clinical Research Communities

Creating a New Network of Connected Expertise to Accelerate Innovation in Healthcare R&D

- ever faster generation of new information
- diversification of innovation sources
- current R&D ecosystem is too fragmented to fully leverage novel content and shared learning
- global sourcing
- rise of new business models of 'expertise networks' that eclipse current monolithic single company innovation models

If You Build It Will They Pay? Adoption of Disruptive Innovation

- new technology/service that simplifies a complex/costly problem
- business model that allows market adoption of the simplified solution at low(er) cost
- incentivized supply and demand to networks to reinforce the disruption

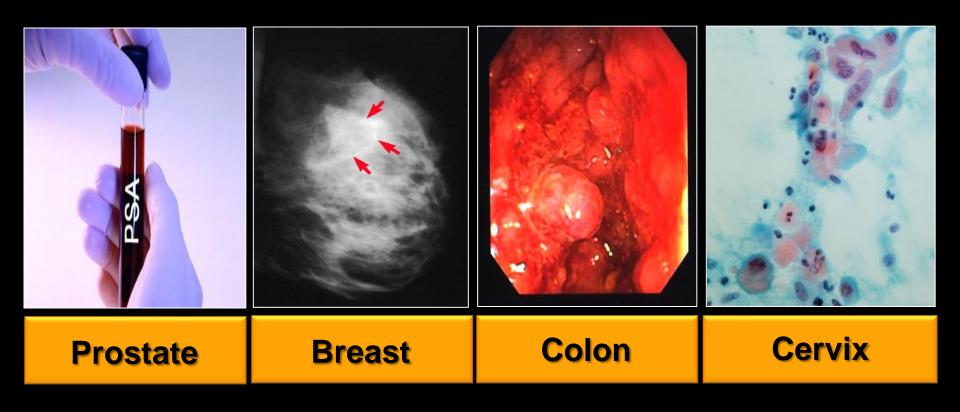
Reimbursement for Diagnostic Tests

The Imperative for Value-Based Pricing versus Current Cost-Based Models

- inadequate US Medicare coding and payment mechanisms
 - out moded, out-dated, lacking in transparency, inconsistently applied
- inappropriate assignment of existing CPT codes to new tests
- engagement of third party payers who derive economic/clinical value from new Dx

The CMS Date of Service Rule (Implemented 1/08) a.k.a The '14 Day Rule'

Sen. R. Wyden (D-Ore)



- "presents a barrier to the use and development of personalized medicine"
- Senate Finance Committee
 Proposed Amendment (10/09) to
 eliminate and allow non-hospital
 labs to bill Medicare
- "We couldn't support a bill that would disadvantage hospital labs" Amy Miller, Policy Director
- "This will lead to closing and downsizing of academic labs. It would benefit a very small number of laboratories and harm a very large number of hospitals" Mary Williams, COO

Demonstrating the Clinical Utility of Diagnostic Profiling

- right disease (subtype)
- right risk: benefit decision
- right treatment
- right patient

Have We Ignored the Biology of Tumor Progression in Our Approaches to Cancer Screening

Have We Ignored Differences in Patterns of Tumor Progression in the Design of Breast and Prostate Cancer Screening Programs?

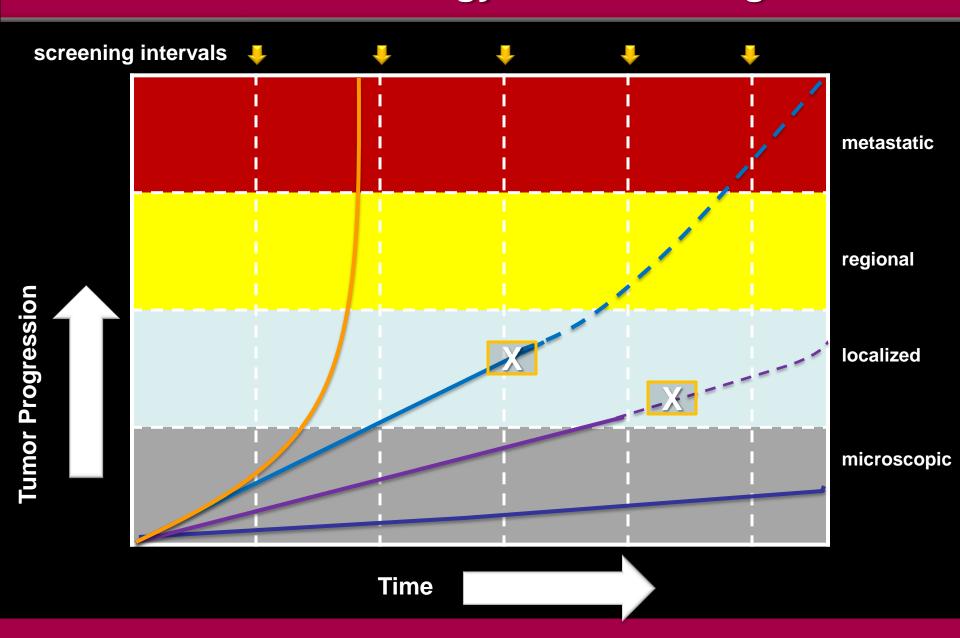
- L. Esserman et. al. (2009) JAMA 312, 1685-92
- Gil Andriole (2009) NEJM 360, 1310
- screening increases detection of early disease

but

incidence of regional disease not reduce commensurately

suggests potential overtreatment for low risk indolent lesions

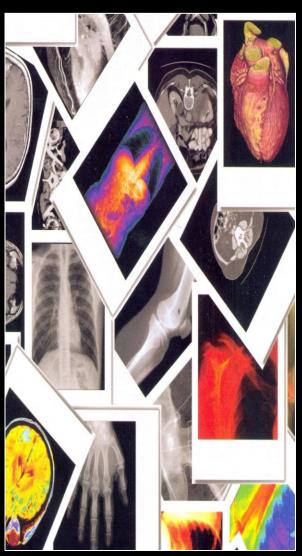
and

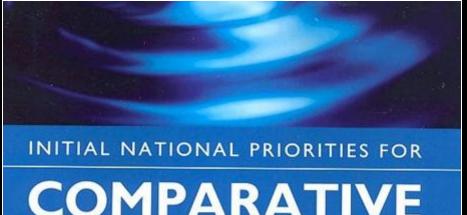

screening intervals insufficient to detect aggressive lethal tumors arising as 'inter-interval' events

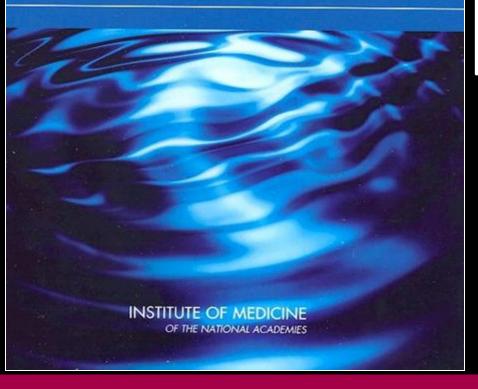
 concept consistent with detection of small fraction of small, early breast cancers classified as low risk by NCI criteria but high mortality risk by NKI 70 gene test

and

I-SPY trial data with 85% malignancies were inter-interval cancers and only 15% detected in routine screening


Effectiveness of Cancer Screens Based on Different Patterns of Tumor Biology and Screening Intervals


How Much New Technology Can We Afford?



COMPARATIVE EFFECTIVENESS RESEARCH

The NEW ENGLAND JOURNAL of MEDICINE

(2009) 360, 1925

Does Comparative-Effectiveness Research Threaten Personalized Medicine?

Alan M. Garber, M.D., Ph.D., and Sean R. Tunis, M.D.

Newswe

THE CASE FOR KILLING GRANNY

CURBING EXCESSIVE END-OF-LIFE CARE IS GOOD FOR AMERICA
BY EVAN THOMAS

I WAS A TEENAGE DEATH PANELIST BY JON MEACHAM

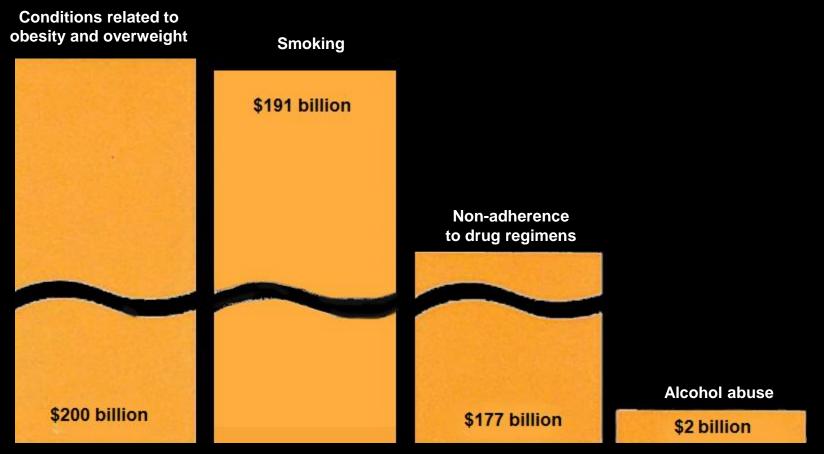
PLUS

THE WAY OUT OF AFGHANISTAN BY FAREED ZAKARIA
THE ROOTS OF THE NEXT CRASH BY NIALL FERGUSON

OBAMA'S CREDIBILITY GAP BY GEORGE F. WILL

UK National Institute for Health and Clinical Excellence (NICE)

Nice Gets Nasty (or Rational?)

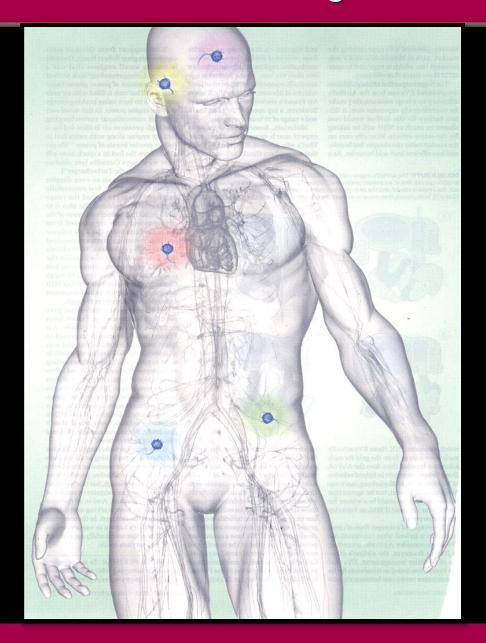


Personalized Medicine: A Broader Perspective

Promotion of Wellness

- increased consumer responsibility for wellness
- remote monitoring of individual health status
- crucial role of healthcare information systems
 - integrated Rx care for complex chronic conditions
 - outcomes and comparative effectiveness
 - earlier detection of disease episodes and risk mitigation
 - wellness versus illness

Annual Excess Healthcare Costs Related to Consumer Behavior


Source: RTI International & Center for Disease Control and Prevention (200), Datamonitor (2007), Americas Health Insurance Plans (2007), Commonwealth Fund (2007), Agency for Health Research and Quality (2003), Analysis by PricewaterhouseCoopers' Health Research

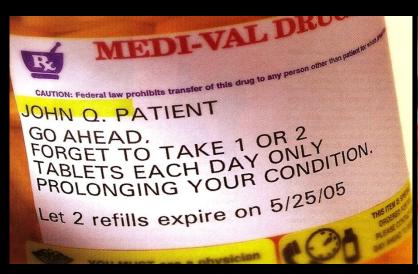
Demographic Trends and the Clinical and Economic Burden of Complex, Chronic Conditions/Co-Morbidities

- 23% Medicare beneficiaries have 5 or more conditions
- polypharmacy and AEs
- poor patient compliance
- multiple physician/venue encounters
- poor communication/ coordination between siloed healthcare services
- procedure-based reimbursement versus care continuum integrated

On Body: In Body Sensors/Devices For Real Time and Remote Monitoring of Individual Health Status

On Body: In Body Sensors and Devices

Objective


remote monitoring of health status

Applications

- multi-feature monitoring and broadband wireless networks
 - ubiquitous sensing
- enhanced autonomy for in-home aged
- proactive alerting and intervention to mitigate health incidents
- monitoring of patient compliance
- coupled linkage to remote Rx dispensing for efficient disease management

The Costs of Non-Compliance with Rx Regimens

- \$177 billion projected cost
- 20 million workdays/year lost (IHPM)
- 40% of nursing home admissions
- projected 45-75% non-compliance (WHO)
- 50-60% depressed patients (IHPM)
- 50% chronic care Rx (WHO)

Paper Kills!:


The Inefficiencies and Risks Created by Sustained Dependence on Paper Healthcare Records

The Infocosm: Emerging Networks of Global Connectivity



Wireless Technologies: Consumer and Clinical Markets Converge

Connecting Patients (and Consumers) to Optimum Healthcare Resources

PMRs and patient support networks for linkage to clinical trials and expertise

integrated care of chronic conditions and specialty Rx distribution

Pharma and Healthcare Social Media (Non-Brand Sponsored) Patient Communities

Pharma and Healthcare Social Media Brand Physician and Nurse Communities

HCPs' social network operated by the Canadian Medical Association

Social network serving the German speaking countries

dermRounds DocCheck Faces

social and professional networking site dedicated to connecting dermatologists, and others in the field of dermatology

HCPs' Social network physicians, dentists, pharmacists, and veterinary surgeons

UK-registered doctors in primary and secondary care

Medical Exchange

medical and healthcare communities

Network for physicians

Network for physicians

DoctorsHangout.com

Personal & Professional Networking for Doctors & Medical Students Worldwide

exclusive social netfor Physicians

connects physicians with information, opportunities, and each other.

MedicSpeak

network of doctors and medical students communication, collaborations, exchange of ideas and sharing of knowledge.

Engage your peers through our FREE global physician community

Trusted Physician's Network

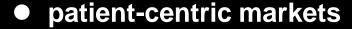
New Media | Medicine

medical students', and pre-medical students' social network

online nursing community and networking site

multi-disciplinary diabetes Learn, share, collaborate

Podiatric Residency Education Online community


research and support community

The Expanding Universe of Health Information Resources: Redefining Physician:Patient Relationships

- MD-centric monopoly
- paternalistic decisions and passive patients
- institutional control
- paper records
- fragmented information and portability barriers
- centralized testing analysis and expert interpretation

engaged patients/consumers

individual custody

EHR/PMRs

seamless integration and mobility

- increasingly decentralized, automated analysis and decision algorithms
- remote health status monitoring

Changing Minds and Changing Behaviors

improvement methods and metrics

evidence and best practices

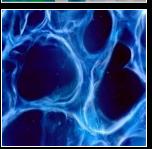
human factors

- Resistance
- delusional merits of status quo
- unwarranted external scrutiny
- claimed risk by change
- loss of status, income, autonomy
- skepticism
- 'victims'

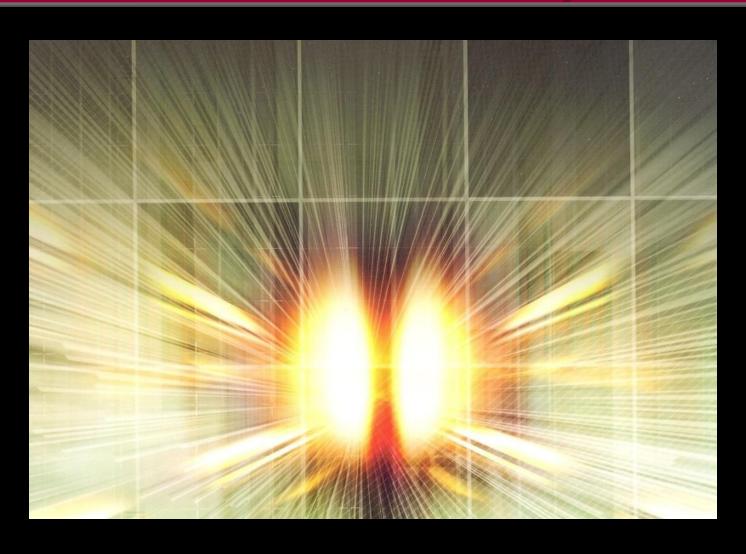
- incentives
- alignment
- ownership
- tangible individual/ group rewards
- political/media/ public pressures

Adoption

New Vistas in Biotechnology with Potential for Major Therapeutic Advances


selective modulation of gene expression via siRNA

 regenerative medicine: programming cellular differentiation and autologous cell therapy



 synthetic biology: cells as novel Rx/vaccine delivery systems or diagnostic sentinels

• tissue engineering: novel biomatrices for repair and remodeling

Technology Acceleration and Convergence in Healthcare Delivery

The Coming Convergence in Healthcare Delivery

Technologies

 biotechnology, medicine, engineering, computing, telecommunications and social media

Clinical Practice

- molecular medicine and increasingly customized care
- diagnostic, drug and device combinations
- POC testing and remote monitoring
- reduced error and improved compliance
- improved outcomes

Realigned Incentives

- integrated care for complex chronic diseases
- earlier disease detection and risk reduction
- wellness versus illness
- remote health status monitoring

The Coming Convergence in Healthcare Delivery

Consumers

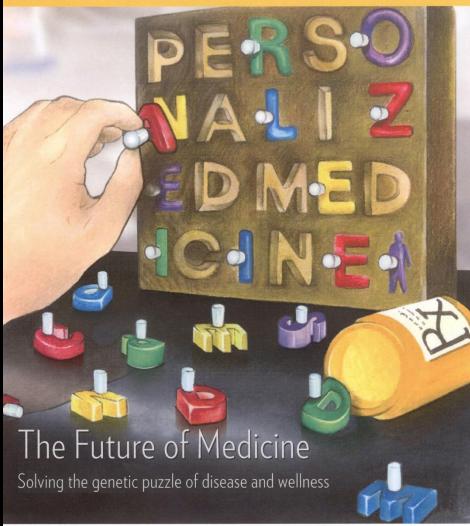
- increased personal responsibility for health
- new incentives for wellness/compliance
- health status monitoring

Connectivity

- integrated care networks for chronic disease
- social media networks and informed consumers
- new supplier networks of specialized turnkey expertise
- value added 'content' services for clinical data mining
- clinical decision-support systems

THE BURRILL POR PERSONALIZED MEDICINE

NOVEMBER 2008



WHERE SCIENCE AND SOCIETY MEE

THE JOURNAL OF

LIFE SCIENCES

FALL 2009

