

"It from Bits": Managing Massive Data as a Critical Challenge For Biomedical R&D and Healthcare Delivery

Dr. George Poste
Chief Scientist, Complex Adaptive Systems Initiative and Del E. Webb Chair in Health Innovation
Arizona State University

george.poste@asu.edu

www.casi.asu.edu

Burrill Biotech Meeting, 24th Annual CEO Meeting Laguna Beach, CA • Oct. 17-18, 2011

Slides available @ http://casi.asu.edu/

"It from Bits" The Rise of Digital Biology

- understanding how encoded genome information creates complex multiscale biological systems ("It")
- defining health and disease in terms of patterns of information flow in biological information networks ("bits")

 the transformation of biomedical R&D, clinical medicine and healthcare delivery into increasingly quantitative, mechanistic data-intensive disciplines

Medical Progress: From Superstitions to Symptoms to Signatures

Mapping The Molecular Signatures of Disease: The Intellectual Foundation of Rational Diagnosis and Treatment Selection

Mapping the Molecular Signatures of Disease, Disease Subtyping and Targeted Therapy: The Right Rx for the Right Disease (Subtype)

Her-2+ (Herceptin)

EML4-ALK (Xalkori)

KRAS (Erbitux) (Vectibix)

BRAF-V600 (Yervoy) (Zelboraf)

Analytical Platforms to Elucidate the Design and Regulation of Complex Biological Networks

Massively Parallel Biosignature Profiling

Large Datasets, Standardized Ontologies and New Computational Analytics

Sensing the First Ripples in the Approaching Massive Data Wave

- uncompressed human genome = 3 gigabytes
- current WGS sequencing efforts now generating terabytes (TB) of data from still modest number of genomes/species (and at low depth coverage)
- 1000 Genomes Project raw data posted after 6 months was 2x Genbank deposits over previous 30 years
- imminent expansion of massive WGS/enriched genome datasets
 - ENCODE, modENCODE, TCGA, ICGSC, Human Microbiome Project
 - comparable datasets emerging in agriculture and metagenomics

Data-Intensive Biomedical R&D and 'The Data Deluge'

Managing Massive Data

Standards for Data Reporting and Database Design

Interoperability of Databases
Across The Continuum from Discovery to Patient Care

New Analytics and High Performance Computing

Extracting Value from Data

- raw data is increasingly cheap
- ill-defined, non-replicable, non-standardized, statistically underpowered data is of little or no value
 - resources sink, diversion and duplication
- the file drawer problem
 - negative findings, often highly instructive, are rarely reported and journal disinterest
- maximizing value
 - from data to knowledge to relevance
 - validated, actionable, adopted and reimbursable!

Critical Challenges for Biomedical R&D

- acceleration of discovery phase knowledge without parallel gains in successful clinical translation and commercial ROI
- unacceptable high rates of failure of candidate Rx in clinical trials
- major knowledge gaps for rational discovery strategies to address late onset chronic diseases
 - diabesity, cancer and neurodegeneration
- regulatory and reimbursement uncertainties for molecular diagnostics (MDx) to subtype disease and drive rational selection of companion Rx
- cost control in healthcare and future pricing/adoption of products with uncertain/limited efficacy

The Rise of Data-Intensive Biomedicine: Disruptive Change and New Value Drivers for Improved R&D Productivity and Healthcare Quality

- mapping disease-induced perturbations in biological systems and networks as the intellectual foundation and critical success factors for enhanced R&D productivity, improved clinical decisions and to promote better health outcomes
- creation of this knowledge resource will require new technical capabilities and organizational models to assemble and analyze biomedical data on an unprecedented scale

Profiling Platforms for Mapping Molecular Networks: The Accelerating 'Data Deluge'

Low Cost Exome- and/or Whole Genome Sequencing

Transcriptomics

miRNAs

Proteomics

Protein Interaction Networks (PIN)

The Epigenome

Modulation of Gene
Expression/Regulation by
Environmental Factors, Xenobiotics
and Rx (The Exposome)

Effect of Maternal
Diet/Stress on
Germ Line Genome Imprinting
(+ trans three-generational?)

International Human Epigenome Consortium

••• 1000 reference genomes by 2020

project blueprint

- launch September 2011 with €30-million
- map epigenome in 60 human blood cell classes and neoplastic counterparts

Cancer Epigenome

Nature (2011) 476, 298

- increased methylation variation at CpG islands
 - increased variability in gene expression
- extensive mutations in genes encoding chromatin remodeling proteins and histone modifications
- hypomethylation of large genome blocks (upto several Mb) involving more than half the genome

The Human Mitochondrial Transcriptome

We Are Not Alone: Variation in the Human Microbiome as a Potential Factor in Health and Disease

Diet-Derived miRNAs Can Survive Digestion and Modulate Host Gene Expression

New Sci. (2011) 1 Oct., p. 10; C. Y. Zange et al. (2011) Cell Res. DOI: 10.1038/cr.2011.158

Mapping the Human Variome:
Defining the Molecular Taxonomy of Individuality and
Correlations With Phenotypic Traits
and Disease Processes

When Will Partial- and Whole Genome Sequencing Become 'Just Another Laboratory Value' in Patient Care?

Applications of Whole Genome and Transcriptome Sequencing

somatic alterations

molecular
profiling
and
disease
subtyping
and
Rx response
prediction

genetic predisposition to disease risk and adverse Rx reactions

germ line genome

- precision molecular diagnostics
- new Rx targets

- complex probabilistic risks
- unknown confounders

Applications of Whole Genome and Transcriptome Sequencing

somatic alterations

molecular profiling and disease subtyping and Rx response prediction

molecular genetic predisposition to disease risk and adverse Rx reactions epigenome

germ line genome

- precision molecular diagnostics
- new Rx targets

- complex probabilistic risks
- unknown confounders

What is A Complete and Accurate Analysis of Genome Architecture and Regulation?

The Scale and Complexity of Human Genome Sequencing Data

Accuracy and Comprehensiveness

- need for consensus metrics for these parameters
- population-based studies
 - pooled samples with low depth coverage (<10x)
- personal genomes
 - greater accuracy and confidence for base calling for clinical diagnostics and care decisions
 - regulatory oversight of QA/QC and analytics algorithms
- current technologies
 - 30-40x coverage to ID 92-95% of both alleles
 - 50-100x coverage to ID 99.9% sequence and rare variants
 - final sequence with only 1 error/10⁶ bases will still contain 6000 errors

Current Challenges in Accurate Genome Annotation

- ID of true variation versus machine artifacts from high error rate-and context-specific sequence errors
- mapping reads to reference genome(s)
 - misalignment of reads spanning indels
 - relevance of non-aligned reads
- persistent inaccuracies in per-base quality scores
 - differences with different sequencing technologies,
 machine cycles and sequence context
- need for platform agnostic consistency
 - sample preparation and enrichment
 - prerequisite for inter-operable data sourcing

The Cost of Sequencing Versus The Cost of Computational Analysis and Storage

- the \$1000 genome,
- the \$? analysis and interpretation cost
- the \$? storage, retrieval and security costs
- turn around time (TAT) for clinical utility
- regulatory and reimbursement policies

The Data Storage Challenge: The Price of Sequencing is Falling Faster Than Computer Storage Costs and Availability

- data 'triage': store only data deemed relevant and/or with differences to reference set
 - risk of bias/ignorance about value of discarded data elements
- data compression and 'loss of precision'
 - different compression methods depending on desired end use/reuse needs
- unmapped reads cannot be compressed using current alignment frameworks
 - 10-40% of reads remain unmapped to traditional reference genomes
 - 60-70% for short RNA sequencing reads
- many samples may not be accessible/renewable
 - cancer

The Adoption of Genome Sequencing in Clinical Diagnostics

- from research odysseys to routine clinical use ("just another lab value!")
- early clinical applications
 - oncology
 - infectious diseases
 - hereditary cancers and individual risk assessment
 - rare diseases of suspected genetic etiology
 - HLA profiling for transplant matching
 - cardiomyopathies
 - X-linked intellectual disability
 - congenital muscular dystrophy
 - mitochondrial disorders

Review of Validation Issues for Clinical Use of Genome Sequencing 23 June 2011

- criteria to assess platform accuracy
- minimum sequencing depth for reliable clinical decisions
- validation sample sets to evaluate platform accuracy
- metrics for quality of sequence assembly and alignment algorithms
- standardization of pre-analytical variables (e.g. preparation of libraries, extraction and quality control of nucleic acids, capture methods, amplification)
- RUO reagents
- sequencers as Class III devices?

Next Comes The Hard Part!

From Genotype to Phenotype

Integration of Gene Expression and
Genome Sequencing Data With
The Dynamics of Biological Pathways and Networks

Individual Variation, Genome Complexity and the Challenge of Genotype-Phenotype Prediction

Cell-specific Molecular Interaction Networks

Disease Perturbations

Design Rule #1 in Biology

 knowledge of the genotype at a single locus or co-regulated sequences cannot predict the phenotype accurately

Design Rule #2 in Biology

- the expressed molecular network ("bits") defines "it" (the phenotype)
- the phenotype and the underlying molecular networks are defined by context
 - cell-specific differences (differentiation)
 - gene-gene (epistasis) and gene-environment effects
 - epigenetic gene activation or silencing
- graded levels of network dysregulation in disease create a continuum of clinical phenotypes (minor to severe)

Mapping Modules, Pathways and Subnetworks in Molecular Networks: The TCGA Glioblastoma Multiform Dataset and Protein Interaction Networks

From: C. J. Vaske et al. (2011) Bioinformatics 26, i237

Adapted From: J. H. Morris et al. (2010) Molec. Cell. Proteomics 9, 1703

Mapping of the Protein Interaction Network in Alzheimer's Disease (AD)

From: M. Soler-Lopez et al. (2011) Genome Res. 21, 364

- 200 high confidence 2P interactions
 - 8 confirmed AD related genes
 - 66 additional candidates
 - 31 in chromosome regions containing putative susceptibility loci
 - 17 dysregulated in AD

Place Your Bets!

Amyloid-Beta Protein as Therapeutic Target in Alzheimer's Disease

monoclonals

- gantenerumab (Roche)
- solanezumab (Lilly)
- poneznmab (Pfizer)
- bapineuzumab (J&J)
- MAB-5102A (AC Immune)

immune globulin

octagam (Octapharma)

imaging agents

- amyvid (Lilly)
- ACC-001 (J&J/Pfizer)

vaccine

UB 311 (United Biomedical)

small molecules

- metformin
- BMS-708113 (BMS)
- CAD106 (Novartis)
- PF 04995274 (Pfizer)
- RQ 09 (RaQualia)
- Anavex (2-73)
- NP-61(Noscira)
- LY-2886721 (Lilly)
- E-2212 (Eisai)

Now Comes The Even Harder Task!: Defining Network Pharmacology

- analysis of Rx action in context of network topologies and dynamics
- same drug: interaction with multiple targets
- same target: interaction with multiple drugs
- mapping structural chemotypes to specific pathways and subnetworks for targeted (poly)pharmacology

From: M. J. Keiser et al. (2011) Nature 462, 180

Reducing The Failure Rate of Investigational Drugs in Clinical Trials

targeted therapies, YES!

but

- improved success requires targeting network modules, pathways and subnetworks not single targets
- complexity of linked and overlapping modules and pathway "cross-talk"
 - adaptive capacity to use "by-pass" pathways to frustrate Rx effects

The Challenge of Mapping Network Structure and Dynamics for Improved Predictability in Selection of Diagnostic Biomarkers and Rx Targets

- the current 'black box' gap in knowledge linking genotype to molecular networks (phenotype)
- still too often 'flying blind' in ID of causal vs. correlative changes in network dysregulation in disease
 - poor accuracy in ID of biomarkers and Rx targets
 - high failure rates in Rx clinical trials due to inability to define multi-target Rx actions needed to reverse network dysregulation and restore homeostasis

Mapping Dysregulation of Biological Networks in Disease

Disease Profiling to Identify Subtypes (+ or - Rx Target)

ID Molecular Targets for Rx Action and Blockade of Compensatory "By pass" Pathways

Initial Response (A/B) of BRAF-V600 Positive Metastatic Miliary Melanoma After 15 Weeks Therapy with Vemurafenib (Zelboraf® - Roche) Followed by Rapid Recurrence of Rx-Resistant Lesions with MEKI C1215 Mutant Allele After 23 Weeks Therapy

Sequence-Based Profiling of Diversity of Mutation Repertoire and Design of Rx-Intervention Strategies in Stratified Patient Cohorts

Colorectal Cancer

BRAF mutant NRAS mutant -KRAS A146T/V-KRAS K117N KRAS Q61L/H/R KRAS E31K KRAS Q22K KRAS G13D KRAS G13C KRAS G12N RAS/BRAF wt KRAS G12V -KRAS G12S KRAS G12R KRAS G12D n=415 KRAS G12C KRAS G12A

Myelodysplastic Disorders

Cancer Res (2011) doi: 10.1158/0008-5472.CAN-10-0192 NEJM 2011 365, 1384

Network Pharmacology

- elucidation of definitive network 'chokepoints' as optimum targets
 - subvert adaptive cellular options to use alternate compensatory pathways
- the design challenge for multi-target polypharmacology
 - multi-agent therapy (patient tolerance?)/regulatory challenges
 - controlled multi-target promiscuity in a single moiety
- does chronic progression in complex, multigenic diseases amplify module/subnetwork dysregulation?
 - greater complexity of multi-target homeostatic Rx 'reset'
 - role of Rx in driving selection of variants with Rxresistance ('escape') pathways (e.g. oncology)

The Relationship Between The Scale of Network Dysregulation in Disease and Technical Complexity (POS) for Successful Rx-Driven 'Homeostatic Reset'

Complexity (tractability) of Achieving Rx 'Reset' of Network Dysregulation

The Relationship Between The Scale of Network Dysregulation in Disease and Technical Complexity (POS) for Successful Rx-Driven 'Homeostatic Reset'

The Relationship Between The Scale of Network Dysregulation in Disease and Technical Complexity (POS) for Successful Rx-Driven 'Homeostatic Reset'

Extent of Network Dysregulation

low high

Complexity (tractability) of Achieving Rx 'Reset' of Network Dysregulation

Opportunities and Challenges Posed by New Diagnostics for Ever Earlier Detection of Major Diseases

Cancer Detection Before Metastasis

Cardiovascular/
Metabolic Diseases

Neurodegenerative Diseases

Early Diagnosis and Curative Surgery

Lifestyle Changes and/or Rx to Limit Risk

The Dilemma of Early Diagnosis Without Rx

Now Comes the Hardest Part of All!

Moving Downstream Beyond Discovery:
The Escalating Scale and Complexity of the Data Stream

Driving Molecular Medicine and IT-Centric Capabilities Into Routine Clinical Practice

Overcoming Gaps in Physician Knowledge of Molecular Medicine and a Paper-Centric Healthcare System

- 90% of Americans lack confidence in their clinicians ability to understand and use genetic information
 - http://www.cogentresearch.com/news/Press%20Releases/CGAT_2010
- professional cultural vulnerability/reluctance to acknowledge
- refuge in outdated SOC/guidelines that fail to integrate much new molecular profiling data
- protracted deliberations by professional societies/boards
- less than 4% of 8967 ACGME programs relate to genetic expertise (JAMA 2011 306, 1015)
- MD curriculum/CME challenges
- generational gap in IT use/facileness and resistance to computerized decision-support tools

Managing "Mega-Data" in Biomedicine

volume

global trials and new markers

bench to bedside: multiscale heterogeneity

integration

The Imperative for Integrated Inter-Operable ACKM Capabilities Across the Full Continuum from Discovery to Patient Care

The Only Valuable Data is Validated, Actionable Data

Mining EHRs to Identify Disease Correlations With Molecular Profiling Datasets and Improved Clinical Stratification (Phenotyping) of Patient Cohorts

Mining EHRs to Identify Disease Correlations with Molecular Profiling Datasets and Improved Clinical Stratification (Phenotyping) of Patient Cohorts

- 18.688 million medical members
- 13,953 million dental members
- 10.410 million pharmacy members
- 966,000 healthcare professionals
- 543,000 primary care doctor specialists
- 5,200 hospitals
- 71 billion health records
- 75 TB storage (50% occupied)

From: Health Data Sept. 2011

What Is? The Evolution of Computation Capabilities for Natural Language Q&A in Large Datasets

Jeopardy 16 February 2011

- IBM's Watson
 - 2880 CPUs
 - natural language questions
- prelude to Q&A systems for biomedicine beyond keyword IR searches

New Visualization Tools, Interactive Interfaces and Rapid Customization Formats

Planning for Rapid Growth in Data Volume and Integration of Distributed Heterogeneous Datasets

- the lottabyte challenge
 - terabytes, exabytes, zettabytes, yottabytes
- growth in volume outstripping the dropping price of physical media
- end-to-end storage strategies
 - scale, cost, location, access, security
- total-cost-of-ownership analysis for storage
 - cost per gigabyte
 - balance between physical and virtual storage
 - data retention policies
- public, private and hybrid 'bursting' cloud options
- security: encryption at rest/in flight

Managing Big Data in Biomedicine: Learning Precedents from Other Research Domains and Corporate Capabilities

BGI Cloud on the Horizon

"Amazon is slow"Evan Xiang, BGI ShenzhenBio-IT World August 2011 p.8

- launch of new platforms
 - Hecate: de novo assembly
 - Gaea: SOAP, BWA, Samtools, Dindel, reals-FS algorithms

- November 2011 launch of new journal with BioMed Central
 - 'big data' studies
 - host citable public datasets on BGI cloud
 - each with permanent digital object identifiers

Development of Vanguard Capabilities in ACKM: A Fundamental Requirement for Sustained Competitiveness

REPORT TO THE PRESIDENT AND CONGRESS

DESIGNING A DIGITAL FUTURE: FEDERALLY FUNDED RESEARCH AND DEVELOPMENT IN NETWORKING AND INFORMATION TECHNOLOGY

> Executive Office of the President President's Council of Advisors on Science and Technology

> > DECEMBER 2010

Digital Biology, Medicine and Healthcare Delivery

Systems
Biology
and
Molecular
Medicine

Personalized
Medicine

Medicine

Optimizing
Outcomes,
Mitigate Risk
and
Control Cost

Massive Data

New Technology Platforms, Databases and Analytics, Infrastructure, Competencies and Business Models

Reset

Biomedical R&D and Clinical Medicine: An Unavoidable (But Essential) Transition to Data-and Computation-Intensive Methods

Strategic Aspirations

- systems-based approaches will define physiology and pathology in terms of molecular information networks
- comprehensive knowledge of the topologies, dynamics and (dys)regulation of molecular networks will increase the predictability and productivity of all aspects of biomedicine
 - R&D strategies for Dx/Rx
 - clinical decisions and outcomes
 - risk mitigation and sustainable health costs

Mobilization of Multi-disciplinary Scale, Pre-competitive Consortia and Private-Public Partnerships to Bring Light to the Current Black-Box of Genotype-Phenotype Relationships

- 'flying blind' in understanding biological network dynamics and disease-associated perturbations
 - limited prediction of system behavior
 - unacceptable high failure rates in clinical trials

- define 'rules' for biological network behavior and dysregulation in disease
- problem complexity unlikely to be solved by single companies or highly fragmented ('siloed') academic initiatives
- new organizational models
 - multi-disciplinary,
 multi-institution, multi-sector
 - 3P alliances
- multi-partner precompetitive consortia aligned to major disease challenges
 - robust base for subsequent competitive 'D' process
 - Dx, Rx, PDx and HIT

IT Future of Medicine

Managing Massive Data: Disruptive Changes and New Products, Services and Partnership Models

Managing Massive Data and Driving New Value Propositions in Biomedical R&D and Healthcare Delivery

ANALYZE

 new services for data storage, mining, diagnostic algorithms

- molecular profiling (personalized medicine)
- global disease surveillance (public health)

PROFILE

 mapping dysregulation of biological networks in disease

Managing Massive Data and Driving New Value Propositions in Biomedical R&D and Healthcare Delivery

Slides available @ http://casi.asu.edu/

