Molecular Medicine, New Dimensions in Laboratory Testing and the Looming Challenge of Big Data

Dr. George Poste
Chief Scientist, Complex Adaptive Systems Initiative and Del E. Webb Chair in Health Innovation
Arizona State University
george.poste@asu.edu
www.casi.asu.edu

Keynote Address:
G2 Intelligence Lab Institute 2014
Inflection Point for Labs
Washington, DC 17 October 2014
Balancing Infinite Demand Versus Finite Resources in an Era of Economic Constraint

More Effective Management of Chronic Disease in Aging Populations

Shift From a “Do More, Bill More” (FFS) Delivery of Care to Integrated Continuity of Care and Managing Individual Risk to Improve Outcomes and Control Cost

Technology, Innovation and New Value Propositions

The Imperative to Achieve Sustainability in Healthcare: Societal (Economic) and Individual (Wellness)
Medical Progress:
From Superstitions to Symptoms to Signatures
Mapping The Molecular Signatures of Disease:
The Intellectual Foundation of Rational Diagnosis and Treatment Selection

- Genomics
- Proteomics
- Molecular Pathways and Networks
- Network Regulatory Mechanisms

ID of Causal Relationships Between Network Perturbations and Disease
Patient-Specific Signals and Signatures of Disease or Predisposition to Disease
Precision Medicine

Molecular Profiling

- Molecular diagnostics and disease subtyping
- ID of altered biomarkers as therapeutic targets
- Improved outcomes and lower cost
- New analytical and computational technologies

Technology Platforms

Rx Selection

Value
The Value of the Clinical Laboratory in the New Healthcare Model

A Central Role for Molecular Diagnostics in Driving Value-Based Healthcare

Molecular Medicine, Big Data and Clinical Decision Tools: The New Currencies in the Evolution of Precision Medicine
The Evolution of Clinical Diagnostic Testing in an Era of Molecular Diagnostics and New Sensor and Device Technologies

- **Unianalyte Tests**
- **Multianalyte Tests**
- **panOmics Profiling**
- **New Regulatory and Reimbursement Policies**
- **On-Body: In-Body Sensors**
- **Remote (Virtual) Care**
- **Increasingly Distributed Data Feeds and Real Time Health Monitoring**

- Centralized Testing, Large Capital Base Instrumentation
Complex Biosignature Profiling: panOmics

<table>
<thead>
<tr>
<th>genomics</th>
<th>proteomics</th>
<th>immunomics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signature Detection, Deconvolution and Multivariate Analysis

- automated, high throughput multiplex assays
- novel test formats and devices (POC)
- new algorithms for complex signal/deconvolution

Mapping Molecular (Information) Signaling Pathways in Health and Disease
Performance Challenges for Clinical Laboratories in an Era of Molecular Profiling and Digital Health

- mastery of constantly changing test menus driven by panOmics and integrated informatics
- erosion of traditional (CPT) code-based reimbursement
- in-laboratory time and cost-per-test will become anachronistic metrics
- new reimbursement models will focus on impact value of tests in improving patient care/cost control
- focus on shorter in-hospital stay will demand faster TAT (life in a perpetual beta-STAT environment)
Genome Sequencing: A Disruptive Technology

Clinical Utility: Not If, but When, What and How
Use of NGS and Clinical Care

Meeting the ‘Fit-for-Purpose’ Standard

The Urgent Imperative to Define Analytical and Interpretation Standards for Clinical Grade Genome Sequencing
“Traditionally, if a doctor orders a test, he can presume the test is done right. Unfortunately, I don’t think we can say that is necessarily true today in the era of molecular testing. We honestly don’t know what people are doing.”

Michael Kolodziej
Director, Oncology Strategy, Aetna
CEN 24 Feb 2014, p. 20
ACMG clinical laboratory standards for next-generation sequencing

Original Investigation
Clinical Interpretation and Implications of Whole-Genome Sequencing

Nature (2014) 508, 469
doi:10.1038/nature13127

Guidelines for investigating causality of sequence variants in human disease

The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomewide research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development.
Genes For
The Overly Simplistic and Deterministic Dangers of a Genome-Sequence Centric Perspective

Biology is More Than the Germ Line and Somatic Genomes

The Over-Simplified Perspective That Whole Exome-and Whole Genome-Sequencing Will Reveal the Full Etiology of Disease Pathogenesis
Individual Variation, Genome Complexity and the Challenge of Genotype-Phenotype Predictions

Junk No More: Pervasive Transcription

- alternate transcription/translation/(co)splicing
- SNPs, CNVs
- pseudogenes
- indels, SVs
- ncRNAs
- phasing
- epistasis
- imprinting
- silencing
- miRNAs/circRNAs/ceRNAs

Cell-specific Molecular Interaction Networks

Perturbed Networks and Disease

recognition of genome organizational and regulatory complexity
Rx safety adverse events

monogenic, high-penetrance alleles

monogenic, high-penetrance alleles

oligogenic, high or intermediate penetrance alleles

complex epistatic interaction of multiple low penetrance alleles

late-onset multigenic diseases
- cancer
- neurodegeneration
- diabesity
- aging

mental illness/neurodevelopmental

prenatal fetal aneuploidy

HLA transplant immunotyping

autoimmunity

high disease frequency

low disease frequency

actionable data

high

low
• depending on the disease and clinical context, genome sequence data alone will not provide a sufficiently complete picture for either Dx or Rx decisions.

• for late onset, multigenic diseases, the underlying pathology is a complex, dynamic, multi-component process.

• mapping the patterns of disruption in molecular signaling pathways requires profiling of multiple aspects of both genotypic and phenotypic (molecular and clinical) changes.
The Need for Multiple Molecular Diagnostic Platforms for Comprehensive Profiling of Actionable Drug: Target Associations to Guide Therapeutic Decisions in Oncology

- FISH
- IHC
- Sequencing (NGS; Sanger)
- PCR

Trastuzumab
- Lapatinib
- Pertuzumab
- T-DM1
- Everolimus

Dabrafenib
- Trametinib
- Vemurafenib

Afatinib
- Cetuximab
- Erlotinib
- Gefitinib
- Imatinib
- Panitumumab

Crizotinib
- Everolimus
- Lapatinib
- Pertuzumab
- T-DM1
- Trastuzumab

Next-Generation Sequencing (NGS)

55 Actionable Drug/Target Associations

19 Actionable Drug:Target Associations
- Afatinib
- Cisplatin
- Carboplatin
- Cetuximab
- Erlotinib
- Gefitinib
- Imatinib
- Sunitinib
- Trastuzumab
- Pertuzumab
- Everolimus
- Trametinib
- Vemurafenib
- Panitumumab
- Lapatinib
- Oxaliplatin
- Sunitinib
- Temozolomide
- Everolimus
- Trametinib
- Vemurafenib
- Imatinib
panOmics, Clinical Microbiology and Public Health

Proven Utility Today!
Out of Sight: Out of Mind!

Comfort and Complacency: The Cocoon of How Quickly We Forget Past Epidemics and Their Toll

Reduced Investment in Biosurveillance, Public Health and Biosecurity: False Economies

Faster Detection and Accurate Diagnosis Saves Lives
Ebola: West Africa 2013-14

- index case December 2013
- confirmation as Ebola March 2014
- WHO declaration of Int. Health Emergency, August 2014
panOmics and Clinical Microbiology

Genomics and Epidemiology MALDI-TOF Organism ID Cytokine Panels Immunosignatures
The Changing ‘Touch Points’ in Healthcare Delivery

Sensors, Smart Devices, Social Media and New Distributed Channels for Health Monitoring
Mobile Devices, Sensors and Remote Health Status Monitoring: The Changing ‘Care Space’ and Improved Continuity in Care Provision

- from fixed, tethered, compartmentalized, provider-centric facilities to
- distributed- and virtual-architectures linking multiple providers, home, work and the internet

expanded ‘points-of-touch’ with the health systems

improved continuity of care and data integration

- from reactive, incident-centric, poorly coordinated and sequential referrals and inefficient post-incident follow-up(s) to
- pervasive, persistent monitoring of health status for pre-emptive risk mitigation, improved compliance and personal stewardship of health
Retail Healthcare: New Services and Value-Based Shopping for Healthcare
“The fourth site of care is going to be the Internet.”

George Halvorson
CEO, Kaiser Permanente
Statement at ONC 2012 Annual Meeting
The Engaged Digital Consumer: Technology Beyond the Exam Room (Televox Survey 294)

- 86% US consumers view e.mail, text and voicemail from providers as valuable as F2F or phone contact
- 33% consumers admit greater honesty in responding to automated prompt systems
- 3/10 consumers consider e.communications from providers as valuable in cultivation of trust
Digital Health: Early Days But Profound Implications for Disruption of Current Practices
Invasion of the Body Trackers

Individual Biosignature Profiling Via On Body: In Body (OBIB) Sensors and Devices

Remote Health Status Monitoring

M4: Making Medicine More Mobile
Phone-Based Health and Medical Apps

- Units
- Epocrates
- Voice Memos
- WebMD
- MediMath
- Medical Calc
- FEC
- PALS
- BAC Calc
- Lexi-Drugs
- RXCalc
- MedCalc
- BLACKBAG
- Skyscape
- OneCalc
- Evernote
- Phone
- Messages
- Calendar
- Contacts
m.Health

Real Time Remote Health Monitoring and Chronic Disease Management

Lifestyle and Fitness

Information for Proactive Health Awareness (Wellness)
“Medical Selfies”:
The Proliferation of Mobile Devices in Healthcare
Never Offline.
The Apple Watch is just the start. How wearable tech will change your life—like it or not
BY LEV GROSSMAN AND MATT YELLA
Miniaturization of Analytical Technologies

“Lab-on-a-Chip”

“Lab-on-a-Tip”

“Lab-Always On” and “Lab-On-Me”
Wireless Smart Bandages, Pills, and Contact Lenses

Vital Signs Monitoring

- Gastroenterology
- Pills with Chips
- Glucose Monitoring
Implantable Devices and Wireless Monitoring (and Modulation)

next-generation miniaturized power sources

security and hacker protections
Teleradiology and Telepathology
Mobile Devices and Telemedicine
Robotics: Telemedicine and Distributed Healthcare

RP-VITA Remote Presence Robot: (iRobot Corp) FDA 510(k) clearance 1/24/13
What Happens When We All Live to 100?
Aging-in-Place: The Connected Senior in the Connected Home

- dignity, independence
- cost and logistics of alternate care sites
- 29% of Americans aged 65 or older live alone
- 8 in 10 seniors own a cell phone
- 22% own tablets
- 59% use e.mail or the internet
Gray Technologies:
Independent But Monitored Living for Aging Populations

- Rx compliance
- Cognitive stimulation
- Early alerts
- Use of appliances

Fujitsu's 'smart walking stick'
Avatars and Robotics for Home Healthcare

The Giraffe Plus is connected to sensors that measure indicators such as blood pressure and allow communication with medical staff.
Living in a World Where the Data Analytics and Interpretation Algorithms Are Obscure to the End User

- ceding decision authority to computerized support systems
- culturally alien to professionals in their expertise domain but accept in all other aspects of their activities
- who will have the responsibility for diligence and oversight of critical assumptions used in decision tree analytics?
Educating Payers on the Value of Biomarkers in Healthcare: Shift from Cost-Based Pricing to Value-Based Reimbursement to Incentivize Biomarker R&D
Data: The Fastest Growing Resource in Biomedicine
Mr. McGuire: I want to say two word to you. Just two words.

“Big Data”

Benjamin: Exactly how do you mean?

Mr. McGuire: There's a great future in Big Data. Think about it. Will you think about it?
Managing Big Data in Biomedicine is Not a Simple Extrapolation from Current Practices

Current Institutional Structures and Competencies Are Ill-Prepared for Pending Disruptive Change
Big Data and Healthcare: No-Shortage of Opinions
Now Comes the Hardest Part: Driving Molecular Medicine and IT-Centric Capabilities Into Routine Clinical Practice
HELL IS THE PLACE WHERE NOTHING CONNECTS — T.S. ELIOT
WELCOME TO BIOMEDICAL RESEARCH AND PATIENT MEDICAL RECORDS
The Diversity of High Value Data Sources in Healthcare: The Integration Challenge

Healthcare as a Complex Information Ecosystem

From Fragmented Silos of Reactive Incident-Centric Care to Systems-Based Integrated Frameworks for increasing Proactive Management of Individual Risk
Stage 2 Meaningful Use: 2014

- 30% of lab orders entered into EHR via CPOE
- 55% of orders to be received in a structured format
 - Logical Observation Identifiers Names and Codes (LOINC)
- provide more than 50% patients with electronic copy of health information upon request
 - lab test results, problem lists
- EHRs must be able to transmit structured lab result to providers of ambulatory care
- use lab results to promote compliance, referral to education resources and health reminders
Progress (?) in Implementation of HITECH Act

- very few hospitals have achieved MU Stage 2 (MU2)
- further delay in MU2 compliance timeline
- stage 3 concepts elicited major pushback
- CMS granting hardship extensions for hospitals and eligible professionals
- easing 2014 EHR certification enables inept products and developers to survive
- GAO reports lack of strategy, prioritized actions and milestones
- PCAST and JASON reports on need for major architecting effort (reboot!)
- delays in implementation of ICD-10
• today EHRs not designed to support secondary use of data to inform research/translational medicine

• HITECH funding for health IT promotes largely e-replication of paper records

• lack of harmonized data standards in different disciplines/delivery systems as handicap to data sharing and meta-analytics outside of original capture institution

• urgent need for standards for diverse data for integration and inter-operable databases
“Stop talking about EHRs!
EHRs are part of a much bigger HIT ecosystem.
They are like leaves on a tree.
These must also be branches, a trunk and roots.
There are networks and hundreds of other HIT systems
that support ancillary organizations and activities,
population health and healthcare.”

John Loonsk
Health IT News July 2014 p,14
Previous Director, Interoperability and Standards, ONC
The Challenge of the Capture of Comprehensive Information Relevant to Disease Risk, Progression and Outcomes

Nature: Nurture and the Individual Phenotype

Environmental/Ecological Factors

Behavioral & Social Factors

Genetic & Biological Factors
who knows why people do what they do?

- the fact is that they do!

these actions can now be traced and measured with unprecedented precision

with sufficient data, the numbers reveal increasingly predictable behavior individual risk patterns

new business opportunities in multiple sectors including healthcare

new ethical and legal issues
Computational Tag, Track and Locate (TTL): Applications for Healthcare Meta-Analytics
“The paradox of a wearable device is that it gives you control and takes it away at the same time”

Time 22 September 2014
Outside HIPAA:
Data Brokers and Mining Health Information

- non-consented meta-analytics
- searching for healthcare information
- use of medical/disease social networks
- on-line purchases of health products
- GPS-location of use of retail stores/pharmacies
- diet, smoking and alcohol purchases
- predictive modeling of physical and mental health
Consumer Data Brokers and New Vulnerabilities in Healthcare Privacy

Bloomberg Businessweek
22 Sept 2014
We Are A Visual Species!
New Visualization Tools: Interactive Interfaces and Customization Formats
The Pending Era of Cognitive Systems: Overcoming the “Bandwidth” Limits of Human Individuals

- limits to individual expertise
- limits to our multi-dimensionality
- limits to our sensory systems
- limits to our experiences and perceptions
- limits to our objective decision-making
The Future of ‘Search’

Intelligence at Ingestion

Deep Learning

Why Wait for the Slow Brain to Catch Up With the Fast Machine
Automated Context: Data Finding Big Data
“Intelligence at Ingestion”

- Feature Extraction and Classification
- Context Analysis
- Persistent Context
- Relevance Detection
- Situational Awareness
- Intelligence
- Rapid, Informed Decisions
Technology Acceleration and Convergence:
The Escalating Challenge for Professional Competency, Decision-Support and Future Education Curricula

Data Deluge

Cognitive Bandwidth Limits

Automated Analytics and Decision Support

Facile Formats for Actionable Decisions
Digital Health, Automation and the Future Work Force

Can Computers and Robotics Can Do Your Job, and Eat Your Lunch?
Precision Medicine

Integration of Healthcare Services
Continuity in Care and Optimizing Wellness
A New Healthcare Ecosystem Arising From Technology and Market Convergence

Technology

- MDx/Devices
- m-Health
- Rx

Hlx

passive/active data collection
analytics and network architecture
EMR/PMR
performance and outcomes analysis

Health Services

- patients
- consumers
- services for integrated care

Data Mining and Integration Services

Comprehensive Profiling and Remote, Real Time Monitoring

Increasingly Targeted Care and Efficient Use of Finite Resources
<table>
<thead>
<tr>
<th>Defining the Future Role of Clinical Pathology and Laboratory Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>● primacy as knowledge integrators in making precision medicine a reality?</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>● Darwinian (Schumpeterian) eclipse by new entrants and new service/business models?</td>
</tr>
</tbody>
</table>
“DNR”

- Denial
- Negativity
- Resistance
Incrementalism versus Disruptive Innovation

Squeezing Savings from Outmoded Processes and Business Models versus Fundamental Change in Processes and Business Models for Major Performance Gains, Cost-Effectiveness and ROI
Building Knowledge Networks to Improve Individual Health and Sustainable Healthcare Delivery

Data Analytics and Clinical Decision Tools

m.Heath and remote health status monitoring
e. Health: mining large scale population databases

New Competencies for Mastery of Data-Intensive Biomedicine

panOmics sensors/devices
molecular profiling of patients (precision medicine) and global disease surveillance (public health)

mapping the dysregulation of biological networks in disease
Slides available @ http://casi.asu.edu/