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Cancer as a Complex Adaptive System (CAS)

® genotoxic insult(s), mutations and genome
Instability in cancer (drivers)

® the progressive evolution of phenotypic
heterogeneity in different clones within tumors

® selection pressures on clonal fitness, adaptation and
the evolution of the metastatic process

® tumor progression as a complex co-evolutionary
Interaction between dynamic changes in tumor
behavior and host responses
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Genotoxic Insult(s), Mutations and Genome Instability:
The Drivers of Tumor Initiation and Progression
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The Lengthy Timeframes for Progression

In Different Human Cancers
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Figure 11.8a The Biology of Cancer (© Garland Science 2014)




Cancer Genomes: A Formidably Complex Catalog of

Genomic Changes and Molecular Network Disruptions




Cancer Genes ldentified in 4,742 Human Tumors
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Copy Number Alteration in 5135 Tumors from 14 Solid Tumor Types

Fraction of Genome Altered
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Genotoxic Insult(s), Accumulation of Mutations and
Progressive Genome Instability

Figure 8.5a The Biology of Cancer (© Garland Science 2014)




The Prevalence of Somatic Mutations

Across Human Cancer Types
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Somatic Mutation Prevalence in Different Cancers
Nature (2013) doi.1038/nature 12477

® survey of 5 million mutations from over 7000
cancer cases from 30 different cancer types

® highly variable mutation load
— 0.001 per DNA megabase (Mb) to 400 per Mb
® childhood cancers carry fewest mutations

® cancers related to chronic mutagenic exposure
exhibit highest mutation burden

— lung cancer (tobacco expose), malignant
melanoma (UV exposure)



Histopathologic Classification of Disease




The Shift from Cancer Diagnosis by Histopathology
to Molecular Profiling of Perturbed Gene Networks and
Altered Molecular Signaling Pathways

Different Tumor Subtypes Arise in the Same Cell Lineage
via Different Genomic Perturbations and Alterations
in Molecular Signaling Networks




The Evolution of the Classification of

Non-Small Cell Lung Cancer (NSCLC)

Adenocarcinoma
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From: T.Lietal. (2013) JCO 31, 1039




Emergence of Different Tumor Cell Clones
and Subclones with Tumor Progression

continued accumulation of genomic alterations
generates cancer cell clones and subclones

with different genomic alterations and
phenotypes (heterogeneity)




Emergence of New Clones With Different Phenotypes

(Heterogeneity) During Tumor Progression
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clone A and B
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Intratumor Genetic Heterogeneity in Multiple Regions of Primary Clear

Cell Tumor and Three Metastases (Perinephric and Chest Wall) in RCC
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Intra-Lesional Variation in Somatic Gene Rearrangements

in Three Treatment-Naive Stage IlI/IV Epithelial Ovarian Cancer Patients
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Clonal Heterogeneity in Cancer

® intratumoral (same patient)
— ‘zonal’ heterogeneity in primary tumor

— presence of different clones in separate
metastases

® inter-patient variation (same subtype of tumor
In different patients)



Genome Instability in Cancer

® continued accumulation of genomic alterations
and generation of clones and subclones with
different genomic alterations and phenotypes

CLONAL HETEROGENEITY IN CANCER:
THE LARGEST OBSTACLE TO
SUCCESSFUL THERAPY



Tumor Cell Heterogeneity:
The Omnipresent and Greatest Challenge in Cancer Therapy




Tumor Cell Heterogeneity:
The Omnipresent and Greatest Challenge in Cancer Therapy

More details Lecture Week Il




Cancer as an Evolutionary Process
Clonal Selection (Fitness): Robustness, Adaption and Evolvability

® continuous acquisition of heritable genetic
variation in individual tumor cells and generation
of clonal progeny

® action of natural selection on the resulting
phenotypes (selection and fithess)

® cumulative acquisition and selection of traits that
confer autonomous unlimited replication, high
survival and eventual progression to invasion
and disseminated metastasis



The Complex Phenotypes for Cancer Cell
Survival and Metastasis
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Genome Instability in Cancer

® tumor initiation and progression via accumulation
of mutations and other genomic alterations that
confer selective growth advantage

® driver mutations

® passenger mutations



Making Sense of Cancer Genomic Data

driver mutations

® oncogenes

® suppressor genes



Cancer

Oncogene Tumor Suppressor
Activation Gene Inactivation

® escape from
growth control

: signals for

growth signals natural tissue

homeostasis

® overdrive
of positive




Cancer:
Unchecked Proliferation

Oncogene Activation
and

Oncogene “Addiction”

® “activating” (gain-of-function) mutations in
proto-oncogenes

® freedom from the negative feedback that
Impose control on proliferation in normal
tissues

® prototypic examples: RAS, PI3-kinase, MYC,
RAF



Multiple Mechanisms for Activation of Oncogenes
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Chromosomal Rearrangements and Gene Fusions in Cancer

@ fusion of oncogenes
Fusion prtein with a second gene

Chronic Acute Papillary
myelogenous lymphocytic Sarcoma thyroid
leukemia leukemia carcinoma
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Adapted From: T. H. Rabbitts et al.
(2009) Cell 137, 391



Activation of Different Oncogenes in Cancers

Arising in the Same Cell Type
(Tumor Subtypes)




Heterogeneity of Driver Oncogenes in NSCLC
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Frequencies of Molecular Alterations in CRC
and Responsiveness to Cetuximab or Panitumumab

o)     §§,§,§,§,§@§§&@§ From: M. Martini et al. (2012)
VMM Ml m m ‘1”””‘””’ Nature Rev. Clin. Oncol.




Two Classes of Tumor Suppressor Genes

® normally act to restrain cell proliferation

® |oss of function mutations can lead to
excessive proliferation/tumor formation

— e.g. RB, NF2, TP53 and PTEN

caretakers

® normally function in DNA repair and chromosome
sorting

® |oss of function mutations contribute to genomic
instability
- e.g. APC, BRCA1, BRCA2



Cancer Predisposition Genes

Retinoblastoma (RB)




BRCA 1 and 2 as Tumor Suppressor Genes:
Different Mutations May Confer Different Risks

® substantially increased
lifetime risks of breast and
ovarian cancers but only small
risk of increased pancreatic
cancer

® |oss-of-function mutations in
central gene region confer
higher risk of ovarian cancer
versus breast cancer than
mutations at gene end regions




N
TP53 mutation prevalence by tumor site
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Figure 9.4 The Biology of Cancer {© Garland Science 2014)



Making Sense of Cancer Genomic Data

driver mutations

e oncogenes
e sSuppressor genes

passenger mutations

« changes in genome and gene regulatory
networks that are not causal for cancer
Initiation and progression

e accumulate with increasing genome
Instability as tumor progresses

 may still contribute to adaptive survival
advantage

- drug efflux transporters



How Does Genome Instability Generate
the Complex Behavior (Phenotypes) of Tumor Cells?

Immunoevasion, Metastasis and Drug Resistance as the
Three Most Clinically Relevant (and Dangerous) Phenotypes
in Cancer Cell Behavior

Understanding the Altered Molecular Signaling Networks that
Drive These Aspects of Tumor Behavior and as
Targets for Diagnostics (Dx) and Therapeutics (Rx)




Molecular Medicine

Defining Disease Mechanisms at the Molecular Level

Mapping the Disruption of Molecular Signaling Networks

Profiling Altered Patterns of Information Flow
in Signaling Pathways and Understanding Their Contribution
to Disease Requires A Systems-Based Approach




Genes For ....
The Overly Simplistic and Deterministic Dangers of a
Genome-Sequence Centric Perspective

The Over-Simplified Perspective That
Whole Exome-and Whole Genome-Sequencing
Will Reveal the Full Etiology of Disease Pathogenesis
and Transform Treatment Options




Profiling Changes in Biological Signaling Networks in Cancer:
Understanding Cancer Requires a Holistic “Systems” Approach

® genome sequence data alone will not provide a
sufficiently complete picture for either Dx or Rx
decisions

— need to understand cancer as a complex
multi-component process

® mapping disruption in signaling pathways requires
profiling of multiple aspects of both genotypic and
phenotypic changes



Elucidation of Disease Mechanisms Will Require More than
Genome Sequence Information: The Need for Comprehensive
Knowledge of Disruption of Gene Regulatory Networks

primary genome sequence

mutations

amplifications, deletions, copy number variation
chromosomal translocations

aneuploidy

epigenetic modifications

the non-coding transcriptome and gene regulation

® theincreasing complexity of regulation of gene
expression by diverse RNA species



The Epigenome:
Reading The Second Genomic Code

e chromatin structure and access to
DNA

@ “beads-on-a-string”

created by formation
of nucleosomes

extended form of
% g chromosome

« DNA methylation



//upload.wikimedia.org/wikipedia/en/6/67/DNA_to_Chromatin_Formation.jpg

Epigenome

the epigenome

® dynamic modulation of gene expression without
change in the primary sequence of nucleotide bases

® requlation of gene expression (activation, silencing)
by modification of chromatin structure and histones

® dynamic changes in cytosine methylation

the epitranscriptome

® dynamic and reversible chemical modification of
RNA

— e.g. N6-methyladenosine



Epigenetic Gene Silencing

. *
Epigenetic Gene Activation
* * * x *
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green line = expressed; red line = silent; % = DNA methylation



Fiqure 7.18 The Biology of Cancer (© Garland Science 2014)




Growing Recognition of the Complexity of the
RNA Universe in Regulating Gene Expression

® pervasive transcription of >90% of the genome
with less than 2% encoding protein-coding genes

® human transcriptome
— 21,000 protein-coding genes
— 9,000 small RNAs
— 10,000-32,000 long non-coding RNAs (IncRNAS)
— 11,000 pseudogenes

® extensive crosstalk and interactions between
different RNA species



Post-Transcriptional Regulation of Gene Expression

gene transcript(s)

l

messenger RNA

ribosome block by competitive
MIRNAS capture of miRNAs (RNA sponges)
by IncRNASs, competitive
endogenous (ceRNASs) and

+ - circular RNAs (circRNAS)

v
control of
protein expression
levels




Individual Variation, Genome Complexity and the
Challenge of Genotype-Phenotype Predictions

anseription
- [translationy.
(CO)spliting
\NPS, CNVsS

Junk No More: Pervasive Transcription Cell-specific Molecular
AlTRgn B o - Interaction Networks

b TR
iy 5

- e

. s TR ’ Perturbed Networks
¢ SPEMRRY @ . 4 L R and Disease

recognition of the
complexity of genome
organization and regulation




The Multiplicity of Genomic, Transcriptomic, Epigenomic and Signaling Pathway

Alterations in AML lllustrate Why Genome Sequencing Alone is Only One Part of
the Molecular Profile Needed for Guiding Diagnosis and Therapy

Chromatin modifiers (30.5%) | Transcription factor fusions
MLL fusions, MLL PTD, : o (18%) PML-RARA,
NUPSENSOT aSiT ez |LSENeetsome URBWNIL, .. o s Auicr T,

KDMB6A, other modifiers PICALM-MLLT10

' Myeloid transcription |

factors (22%) RUNX1,
CEBPA, other myeloid |*

transcription factors ‘

NPM1 (27%))

Tumor
suppressors (16.5%)
TP53, WT1, PHF6

| .'-:"?'_ :—x.';:s':_:.? e s -

r‘ ' | DNA methylation (46%)

| TET1,TET2, IDH1,
IDH2, DNMT38B, DNMT1,

DNMT3A

[ Cohesin complex (13%) )

Activated signaling (59%)
FLT3, KIT, KRAS, NRAS, PTPs,
Ser/Thr kinases, other Tyr kinases

From: S-J. Chen et al. (2013) Nature Genetics 45, 586




GBM Expression Subtypes and TF and miRNA-TF Regulatory Networks
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Canonical Molecular Signaling Networks and
Pathways and Dysregulation in Disease
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The Complex Ecology of Tumor Progression
and Metastasis

The Tumor Microenvironment:

Molecular Signaling Between Cancer Cells,
Immune Cells and Tissue Components




The Complex Ecology of Malignant Neoplasms

® multiple cell types and inter-cellular
molecular communication activities in the
tumor microenvironment(s)

® tumor cell-tumor cell interactions
® tumor cell-host stroma interactions
® tumor cell-host defense interactions

® tumor cell-host interactions in different
body organ environments for successful
MEERENES

® cffect of treatment(s) on tumor cells, host
defense systems and the host microbiome



The Complex Microenvironment of Neoplasms
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Small localized Tumor that can continue
tumor to grow and spread

Angiogenesis

—

From L. J. Kleinsmith, Principles of Cancer Biology.
Copyright (c) 2006 Pearson Benjamin Cummings.



Reprogramming Energy Metabolism in Cancer Cells
The Warburg Effect

® pioneering work of Otto Warburg (1927)

® normal dominance of oxidative metabolism
under aerobic conditions (Krebs cycle)

® normal cells shift to glycolysis under anaerobic
conditions

— redirect pyruvate away from mitochondrial
oxidation to reduce pyruvate to lactate

® tumor cells metabolize glucose to lactate in
both aerobic and anaerobic environments

— support survival and proliferation in
microenvironments with limited oxygenation
(hypoxia) due to impaired vascular supply



Reprogramming Energy Metabolism in Cancer Cells

® possible role of reactive oxygen species (ROS)
released by tumor cells in causing tumor-
associated host fibroblasts to switch to aerobic
glycolysis
— Increased production of lactate and pyruvate as
metabolites to fuel cancer cells

® similar reprogramming of adipocytes in fat tissue

— production of free fatty acids (FFA) as tumor
nutrients



Pro-Inflammatory Host Responses
and Promotion of Tumor Growth

® insufficient blood supply, hypoxia, increased
acidity and impaired nutrient supply in growing
tumors trigger necrosis and release of
pro-inflammatory signals

— stimulus to recruit host immune cells who
then release further pro-proliferation signals
exploited by tumor cells to promote survival
and progression



The Tumor Microenvironment Hijacking:
Host Responses by Tumor Cells to
Promote Proliferation and Progression

® tumors secrete growth factors and
chemoattractants for host inflammatory and
Immune cells

® pro-inflammatory cytokines released by these host
cells promote tumor progression

— Suppress apoptosis
— promote cell cycle progression/cell replication
— angiogenesis

— Induce epithelial-mesenchymal transition (EMT)
markers



The Tumor Microenvironment
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Tumor-Mediated Suppression of
Host Anti-Cancer Immune Responses

® tumors recruit T regulatory cells (Treg) and
myeloid-derived suppressor cells (MDSC)

® these host immune cells suppress the ability
of cytotoxic killer T cells to detect and destroy
tumor cells

More Details Iin
Lecture Week lI




Invasion and Metastasis:
The Start of the Deadly Phase of Cancer Progression
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Macrophages and the Tumor
Microenvironment

® tumor-associated macrophages (TAM)

® switch of macrophages from M1 to M2
phenotype in normal inflammation and then
switch back

® in tumors and obesity macrophages remain in
M2 state

® role of TAM in early steps in metastasis
(iIntravasation)



A Perverse Molecular Conversation:
Tumor Cell Signals That Stimulate Host

1. Cancer cell
releases
microvesicles that
contain miRNA-21
and miR-29.

2. Macrophages
take up the
microvesicles
releasing miR-21
and miR-29 into
the cytoplasm
where they are
taken up by
endosomes.

Macrophages to Promote Tumor Growth and Spread

4, Cancer cells

take up IL-6/TNFalpha,
facilitating

tumor invasion

and metastasis.

3. In the endosome,

miR-21 and miR-

29 bind with toll like
receptors, causing

the macrophage

to release interleukin 6 (IL-6)
and tumor necrosis

factor (TNF) alpha.

Adapted from Frontiers: OHSU James CCC Winter 2014




Entry of Metastatic Cancer Cells Into The Circulation (Intravasation)

and Promotion by Tumour-Associated Macrophages
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Tumor Cell- Platelet Interactions in Promoting
Dissemination and Extravasation
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« protect against lysis by NK cells; increase adhesion to
endothelial cells; recruitment of WBC that release pro-
inflammatory cytokines

From: N. Raymond et al. (2013) Nature Rev. Cancer 13, 863
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The Plasticity of Epithelial Cancer Cells:
Switching (Transition) Between Epithelial and Mesenchymal Phenotypes

Epithelial: Mesenchymal Transition (EMT) and Mesenchymal: Epithelial
Transition (MET) as Core Features of Metastatic Spread and Tumor Dormancy




Formation of the Germ Layers in Embryogenesis:
Endoderm, Mesoderm and Ectoderm
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Migration of Neural Crest Cells and Formation of
Different Cell Types in Multiple Body Locations

Neural crest

Migrating neural crest cells ——

Neural tube

Notochord

Mesoderm

—» Ectoderm

Ectoderm

Osteoblasts
Osteoclasts

Smooth muscle cells Adipocytes Chondrocytes

Neural Crest-derived Stem Cellsweb.biologie.uni-bielefeld.de -

Melanocytes Schwann cells Neurons
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Epithelial (E)- Mesenchymal (M) Transition (EMT)

® acquisition of M-like properties by E cells
® physiological processes

— migration of mesodermal cells during embryonic
gastrulation

— delamination of neural crest cells from dorsal
neural tube

— migration to multiple locations and subsequent
differentiation into diverse cell lineages

® cancer

— proposed crucial role in invasion and metastasis
of epithelial malignancies

— potential for repeated cycles of EMT and reversal
(MET)



The Epithelial-mesenchymal Transition in

the Invasion and Metastasis of Malignant Epithelial Cancers
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Principal Patterns of Metastatic Dissemination

In the Major Epithelial Cancers

prostate

bone marrow
liver

pancreas breast colon

Figure 14.43 The Biology of Cancer (© Garland Science 2014)
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“The Seed and Soil Hypothesis” of Metastasis

“When a plant goes to seed, its seeds are carried in all directions;
but they can only live and grow if they fall on congenial soil...
While many researchers have been studying ‘the seeds,’
the properties of ‘the soils’ may reveal valuable
Insights into the metastatic peculiarities of cancer cases.”

Stephen” Paget 1889




Cancer Metastasis: Key Questions

® what determines the different anatomic distribution
of solid tumor metastases?

® |s every cancer cell in a malignant tumor capable of
causing metastases?

® s metastatic capability a property of only certain cell
subpopulations/clones present in the primary
tumor?

® do cells in metastases continue to spread
(secondary metastases)?

® are future sites of metastatic colonization ‘primed’
by host cells to promote conditions for metastatic
cell survival?



Tumor Dormancy Versus Metastatic Progression
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Summary and Key Points
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Cancer

Sustained Tumor Growth,
Progression and Metastasis
and Resistance to Treatment
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The ‘Fitness’ of the Metastatic Clone:

“The Decathlon Phenotype”

survival in the primary tumor

Invasion of surrounding tissue
epithelial-mesenchymal transition

Intravasation

survival in the circulation

extravasation

colonization of new metastatic site
mesenchymal-epithelial transition

evasion of destruction by host immmune defenses
resist therapeutic assaults
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Cancer as a Complex Adaptive System (CAS)

® mapping the dynamics of the evolution of clones
with genotypic and phenotypic differences
(heterogeneity) during progressive tumor growth
and metastatic spread

® how knowledge of the co-evolution of tumor
behavior and host responses is essential to design
iImproved diagnostic and therapeutic approaches in
cancer




