Complexity Perspectives in Innovation and Social Change

Sander van der Leeuw Arizona State University Santa Fe Institute

The message

- We must innovate to create a sustainable society
- The threat to sustainability is the result of innovation
- Can we find a way out of this dilemma?
- Yes, but only if we innovate differently!
 - We need to harness innovation rather than live with its results
 - #We need to know more about innovation ...
 - # We need to know more about sustainability ...
- How do we manage the change?

We are living in a complex adaptive system...

- The Earth system is a complex adaptive system
- Society is an integral part of it
- Such systems are characterized by
 - # High dimensionality
 - # Multiple attractors
 - Open-ended trajectories
 - # Tipping points and unstable phases
 - Absence of long-term predictability
 - ₩ ...

Every society is an information society

- Information processing is the driver of societal dynamics
 - # In contrast to energy and matter, information is not subject to the conservation principle: as neg-entropy, it can spread
- Societies are not held together by the matter they exchange, but by the ideas they share
 - # Information is the enabler, energy the constraint
- Human societies harness necessary energy by transforming the organization of their environment
 - # They dis-embed from the environment to control it

Our cognitive capacity is limited

- → Human STWM limited to 6 ± 2 dimensions
- We have managed to 'deal with' the CAS we are part of, but we do not 'know' it
 - #Our ideas under-determined by our observations
- Reductionist scientific approach focuses on causality through observation-validation cycle
 - # It fragments our perspective
 - It focuses on explaining the past, rather than anticipating
 the future
- To deal with complexity, we bring larger and larger groups together
 - Communication categorizes and simplifies, reducing dimensionality of phenomena

... and we know less and less

- Our actions lead to unintended consequences
 - # They result in increases in dimensionality
 - # Shift in risk spectrum to longer, unknown timescales
- Over the longer term, our knowledge grows linearly or at best geometrically
- The unintended consequences of our actions grow exponentially
- This leads to inevitable crises
 - # Time-bombs; Black swans; Risk barriers
 - Challenges outweigh potential solutions
- Crises are temporary incapacities of a society to process the information needed to deal with the world

This is where we are now

- There seem to be several crises:
 - # Environmental, financial, social
- In reality there is one crisis: our societies' information processing apparatus is now insufficient to deal with the dynamics of our surroundings
 - # Their dimensionality has exploded on us
- The situation is so complex that we play 'panic football'
 - Short-term tactical decisions (innovations) come to dominate
 - # We lose sight of long-term strategy (sustainability)
- And in so doing, we further aggravate the situation

The long term of sustainability

- Innovation shifts risk spectrum, creates unknown longer-term risks in environment
 - # Unintended consequences
 - # Time-bombs
- Throughout history, this *locally* threatened sustainability, but was dealt with because
 - # Migration always allowed a new beginning
 - # There was a built-in control on innovation: was it useful?
- Neither is available now

Innovation between supply and demand

- Invention is about implementing a bright idea
- Innovation is about matching supply and demand so that the invention spreads
 - Until the 1800's innovation demand-driven: how to find a use for a brilliant idea?
 - Nowadays innovation supply-driven: how do we adapt society to that brilliant idea?
- Western society has become innovation-dependent
 - Absence of self-regulatory mechanism
 - # Innovation accelerates exponentially
- Linear approximations inappropriate to study innovation
 - Complex adaptive systems approach called for

Endemic 'wild' innovation

- Up to 17th cty: innovation seen as 'bad'
- Now seen as (the ultimate) 'good'
- We invest in innovation for its own sake
 - Not knowing how it works
 - Not knowing what it will do
- There is a lot of waste in investment and result
- 'Wild' innovation threatens sustainability
- We need to focus innovation on achieving sustainability!
- We need to understand innovation and define sustainability
 - # Can innovation be circumscribed and/or anticipated?
 - # Can its environmental impact be limited?

How to attain sustainability?

- Develop an 'a posteriori' perspective, working back from our vision of the future to what to do in the present
 - # Become pro-active rather than re-active
 - # What kind of future will be sustainable?
 - This is the hard question of societal choice, not science
 - # What do we need to know to achieve it?
 - What is the missing knowledge and how do we acquire it?
 - Which strategies need to be implemented?
 - How do we decide between them?
 - What is needed for their implementation?
 - Where do we need to innovate?
 - # How do we educate people about them?

How do we innovate?

- ♦ We don't know!
 - # In reductionist science, it is a non-scientific topic
 - # We have only used a posteriori indicators
 - # We have looked for the key under the streetlamp
- Develop a generative ('a-priori') perspective
 - # How does innovation happen?
 - # How does one become innovative?
 - # How does one create a culture of innovation?
- Evaluate role and consequences for innovation and sustainability of choices made against those not made
 - # Building and evaluating multiple scenarios
 - # Simulation, fore- and back-casting as continuous process

Challenge 1: Generalized ICT

- Use ICT to reintegrate society in a different way
 - # Current political crises across all democracies a warning sign!
 - # Replace top-down vs. bottom up with an interactive system
 - # Replace polls and surveys by continuous real-time monitoring
 - # Reduce time delays in interaction
- Further integrate instrumental and social informationprocessing and decision-making
 - # Introduce computational thinking everywhere in society
 - Introduce generalized information processing thinking about society in computer science

Challenge 2: Overcoming our cognitive limitations

- Overcome the under-determination of our ideas by our observations
 - # Massive ICT real-time data gathering is capable of doing it
- Overcome the limitations of human STWM
 - Generalized ICT to go back and forth between reducing and increasing dimensionality in an explicit way
 - # New ontologies, new mathematics, new software
 - # Integrate forecasting and backcasting
- Overcome the limitations of our thinking
 - Combine ex-post and ex-ante approaches in science
 - From disciplines to intellectual fusion.
 - Use-inspired research between 'blue skies' and 'applied'

Challenge 3: Emergence by design

- Fundamentally different way of dealing with up-scaling communication to promote social coherence
 - # Interactivity between top-down and bottom-up
- Ideas, opinions and inventions are rampant, both on supply and demand side
 - Continuously monitor both in cyberspace in real-time
- Select high-demand inventive ideas aligned with sustainability
 - Identify or create scaffolding structures in cyberspace and develop them
- Achieve quick response to demand, beginning with lowhanging fruit

Challenge 4: Unintended consequences

- Outcomes of social (and socio-environmental) innovations cannot be anticipated, even in the short term
 - Too many stakeholders and actors with different perceptions and actions
- Complex systems are unpredictable in the long-term
 - Dynamic CAS models improve short-term prediction of immediate consequences
 - # Much work is being done on the dynamics of these systems
- Use Agent-Based Modeling as basis
 - # Relational logic on branching space-time concept (Belnap et al.)
 - # Include feed-forward alongside feedback (J.S. Nicolis)
- Develop decision-making under uncertainty research