Network-centric Biomedicne: toward a learning healthcare system

Ken Buetow, Ph.D.

Director Computational Science and Informatics Core Program,
Complex Adaptive Systems Initiative Arizona State University

Biomedical Knowledge Cloud: A Network to Transform Healthcare Spring 2012 Internet2 Member Meeting

The Fourth Paradigm:

Data-Driven Knowledge, Intelligence and Actionable Decisions

- changing the nature of discovery
 - hypothesis-driven versus hypothesis-generating unbiased analytics of large datasets (patterns, rules)
- changing the nature of explanation
 - statistical probabilities versus unitary values
- changing the cultural process of knowledge acquisition
 - large scale collaboration networks, open systems
- changing knowledge application
 - increased quantification and decision-support systems
- changing cognitive frameworks, intellectual capabilities and competencies for knowledge-intensive competitiveness in multiple domains
- changing education and training

Courtesy G. Poste

Determinng The Molecular Basis of Disease:

The Intellectual Foundation of Rational Diagnosis and Treatment Selection

Molecular Pathways Network Regulatory Genomics Proteomics and Networks **Mechanisms ID of Causal Relationships Between Patient-Specific Signals and Signatures of Disease Network Perturbations and Disease** or Predisposition to Disease

Courtesy G. Poste

Data are the life blood of biomedicine

Diverse types

- Clinical Observation
- Clinical Laboratory
- Imaging
- Registry
- MolecularCharacterization
- Biospecimens
- Reference

Distributed sources

- Research Center
- Care Delivery Setting
 - Hospital
 - Practice
 - Laboratory
- Registry
- Consumer
- Industry

The Multiple Users and Complex Connectivities for Seamless Information Transfer in the HIT Ecosystem

W. Dalton et al, Clin Cancer Res; 16 (24) December 15, 2010

The Rise of Data-Driven, Data-Enabled Science and Technology

- data changed by computing
- computing changed by data
- data are now fundamentally networked
- increasing fraction of data is 'born digital'
- ever larger data sets become increasingly unmovable with existing infrastructure
- simulations using data and meta-analytics amplify the data metaverse

Biomedicine: "fallen and can't get up"

- Impending "Pharmageddon"*: Declining R&D Productivity with Rising Costs
- Healthcare ecosystem is broken
- Poor understanding of the underlying biological complexity – current dominance of reductionist paradigm
- Vertically integrated development model (FIPCo) vs networked model (FIPNet) that dominates other sectors
- Exponential fragmentation of health information

need to embrace biomedicine as SYSTEM

* from M. King Jolly, Pharm.D. Quintiles, Inc. DIA 2011

Biomedicine: a Complex Adaptive System "the whole is more than the sum of the parts"

- Diverse stakeholders: multidimensional, interacting "ecosystem"
 - Industry, Academe, Government, NGOs
 - Physicians, Regulators, Researchers, Payors,
 Consumers, Public Health Officials
 - Biology, Chemistry, Medicine, Business, Sociology,
 Anthropology
- Adaptive behaviors (dynamic as opposed to static)
- Emergent properties (or unintended consequences)
- Interdependencies
 - Resourses
 - Information

Strategies for "Managing" Complexity

Networking

- Differentiated functions connected though welldefined interfaces – e.g.
 - Biologic processes
 - Manufacturing

Layering

- Abstracted combinations of functions into hierarchical/multidimensional strata which connect through well defined interfaces —e.g.
 - Quantum physics Newtonian physics
 - Biologic complexity : cell, organism, society
 - Organizational hierarchies

Network-centric "warfare"

A <u>military doctrine or theory of war pioneered by the United States</u>

<u>Department of Defense</u>. It seeks to translate an information advantage, enabled in part by information technology, into a competitive warfighting advantage through the <u>robust networking</u> of <u>well informed</u>

<u>geographically dispersed forces</u>. This networking, combined with changes in technology, organization, processes, and people - may allow new forms of organizational behavior.

Specifically, the theory contains the following four tenets in its hypotheses:

- A robustly networked force <u>improves information sharing</u>;
- Information sharing <u>enhances the quality of information</u> and shared situational awareness;
- Shared situational awareness <u>enables collaboration</u> and <u>self-synchronization</u>, and <u>enhances sustainability</u> and speed of command; and
- These, in turn, dramatically <u>increase mission effectiveness</u>.

(Wikipedia)

Applying CAS Principles to Facilitate Information Flow

- Define *modules* that address specific needs
- Connect through "welldefined electronic interfaces"
- Semantic Interoperability
 - Defined syntax
 - Defined semantics

Application Programming Interfaces

- Can be heterogeneous
- Can restrict access
- Can be commodity (proprietary) components that connect at (open) defined interfaces

The glue that binds parts together is metadata infrastructure

Shape of boundary is defined in APIs

Interoperability through Metadata-based "Knowledge Stack"

- Componentized knowledge representation
- Permits information to be "pivoted"
- Based on international standards

Idealized Modular "Framework" supporting Biomedical Research Data Liquidity

Complicating Considerations

Nature of Data

- "Data Validity": Garbage In- Garbage Out
- Human Subjects Protections
- Intellectual Property

Technical

- Secure access
- Volume/Magnitude
- Need for integration
 - Diverse Data
 - Multiple Source
- Need for choreography

One size does not fit all

- Nature of the data to be accessed
- The question one wants to answer

Continuum of need mediates the need for adding layers of complexity

Strategies for Addressing Complexity

- Diversity of APIs that support paradigms within given communities (expose multiple "flavors" where possible)
- Adding modules to address issues ONLY when necessary
- Federating Access: Data control remains local
- Escalating introduction of standards-based metadata
- Analytics go to the data/co-reside with the data
- Virtual Communities where access to individual level data is needed

A Biomedical Informatics Ecosystem

How do we get there from here?

- Approach as Ultra Large Scale Systems problem
 - "City planning" as opposed to "building architecture"
 - "Building codes"
 - Over-arching framework
 - Incremental, problem-directed, implementation
 - Bias toward "working code"
- Coalition of the Willing
- Policy to address regulated environment and cultural barriers

Summary

- Approaching Biomedicine as a Complex Adaptive System may help address some of the challenges it currently faces
- Information, and as such Information Technology can serve as the glue to connect the Ecosystem
- It is technically feasible to create and deploy technology to exchange information within and between members of the ecosystem
- A multi-stakeholder, multidimensional community will be necessary to create a sustainable ecosystem

