BIO 302:
APRIL 2, 2015

WEEK 11, LECTURE 2:
SYSTEMIC TREATMENT OF CANCER:
PHARMACOLOGIC, BIOLOGICAL AND IMMUNOTHERAPEUTIC TREATMENTS

Dr. George Poste
Chief Scientist, Complex Adaptive Systems Initiative
and Del E. Webb Chair in Health Innovation
Arizona State University
(e-mail: george.poste@asu.edu; Tel. 480-727-8662)
www.casi.asu.edu
Tumor Cell Heterogeneity:
The Omnipresent and Greatest Challenge in Cancer Therapy
Mutations in Key Genes and Pathways in 100 Pancreatic Ductal Adenocarcinomas

Cancer Rx: Ugly Realities

- in the majority of cancers the efficacy of single therapies is either short-lived or completely ineffective
- mutations that confer Rx resistance may pre-exist prior to treatment (intrinsic resistance) or arise as de novo mutations conferring selective survival during treatment (acquired resistance)
- mutations are typically present in multiple pathways and intrinsic and/or acquired mutations in non-targeted pathways will enable ‘by-pass’ signaling circuits to ensure tumor cell survival and create a domino (cascading) effect and broadening resistance spectrum
Challenges in Cancer Therapy

- heterogenous disease
 - how to select right Rx for right patient
- alterations in multiple molecular targets and pathways
 - how to design rational combination therapies
- ongoing clonal diversification with tumor progression and effect of Rx on clonal evolution
 - how to destroy multiple clones and/or stop clonal evolvability
- selective deregulation of growth controls in cancer cells versus replication still needed for production of normal cells (gut, bone marrow, hair)
 - how to minimize adverse events
The Biological Complexity of Cancer and the Design of Future Treatment Strategies

Formidable Performance Requirements

- hit all clones
- hit all clones in multiple metastases in multiple body locations
- hit all new emergent Rx-resistant clones
Design of Cancer Treatments to Hit Multiple Targets

- single drug that hits multiple clones and multiple signaling pathways
 - pharmacological promiscuity
 - very low probability of technical success
Design of Cancer Treatments to Hit Multiple Targets

- multi-drug combinations
 - patient tolerance
 - cost
- may delay emergence of clone(s) with Rx-resistance to one or more drugs in combination
- high probability that such Rx-resistant variants will eventually emerge
 but
 - Rx as selection pressure to generate these ‘escape’ clones
Are We Targeting the Right Cancer Cell Lineage with Current Cancer Drug Therapy Approaches?
Stem Cells and the Growth Dynamics of Normal Tissues

- embryogenesis
- organ regeneration (limited in mammals)
- post-natal cell turnover in different body tissues/ organs
- tissue repair

Figure 12.3c: The Biology of Cancer (© Garland Science 2014)
asymmetric division of self-renewing stem cell

stem cell

unlimited replicative capacity for self-renewal

1st daughter

2nd daughter

transit-amplifying cell (precursor for differentiated cell progeny)

limited replicative capacity
Replicative Self-Renewal

- stem cells: unlimited but highly controlled division potential

- asymmetric division sustains stem cell population and pool of progenitor and differentiation committed cells with limited number of cell divisions (terminal differentiation)

normal tissues
Replicative Self-Renewal

- loss of control circuits that limit the number of cell divisions as hallmark feature of cancer

- does every cancer cell have potential to generate clones with metastatic ability and unlimited replicative capacity or are only a specific population of stem-like cancer cells (CSCs) endowed with this capability?
All Initiated Cells Have Potential for Unchecked Replication and Progression to Malignancy

- Tissue Specific Stem Cell
- Progenitor and Differentiated (P/D) Progeny
- Cancer Initiating Mutation(s) in P/D Cell
- Tumor Progression and Eventual Emergence of Metastatic Clones (●●)
Cancer Originates and is Maintained by Mutations in Tissue Stem Cells

Asymmetric Division of Cancer Stem Cell

Self-renewing Cancer Stem Cell (minor component of tumor mass)

Progenitor and Differentiated Progeny Tumor Cells From Mutated Stem Cell (tumor bulk)

Mutations in Stem Cells

Asymmetric Division

Self-renewing Stem Cell

Progenitor Cells (limited replication)

Differentiated Cells
Unknown But Crucial Issues in the Evolution of Drug-Resistance (\(D'\)) Phenotypes in Cancer

- can only stem cells seed metastases with subsequent expansion of the tumor cell population in metastases by proliferation of their P/D progeny?
- do all drug-resistance (\(D'\)) phenotypes arise in stem cells and subsequent expression in their P/D progeny?
Implications of Different Cell-of-Origin Models for Cancer on Therapeutic Strategies

The Cell-of-Origin in Cancer

balance of evidence shifting to cancer stem cell (CSC) model
If Stem Cells Are Surviving Unscathed then Therapeutic Failure is Inevitable and New Therapeutic Approaches to Selectively Attack of Stem Cells Are Required
Immunotherapies for Cancer
Immunoevasion by Tumor Cells

- “stealthy” tumor cell strategies that reduce detection and/or killing by body’s immune defenses, therapeutic monoclonals and anti-cancer vaccines
Immunoevasion by Tumor Cells

- “stealthy” tumor cell strategies that reduce detection and/or killing by body’s immune defenses
- avoiding the immune detection radar
 – loss or masking of abnormal tumor cell surface proteins recognized by antibodies, NK cells and/or killer T lymphocytes
- suppression of the host immune system
 – tumor signaling to activate regulatory T cells (Treg) that suppress action of anti-tumor killer T cells
Immunotherapies for Cancer

- non-specific immunotherapies
- monoclonal antibodies (Mabs)
- immune checkpoint modulators
- adoptive (immune) cell transfer (ACT)
- tumor vaccines
The next era of treatment

KADCYLA contains 3 components: the active antibody trastuzumab, the cytotoxic agent DM1, and a stable linker1-3

In preclinical studies:

DM1+ (cytotoxic maytansinoid)
Inhibits tubulin polymerization to induce cell-cycle arrest and cell death

Trastuzumab (monoclonal antibody)
Binds to HER2 at subdomain IV to suppress downstream signaling

MCC− (stable linker)
Stabilizes KADCYLA in circulation to release DM1 after entering the target cell
Immunotherapy for Cancer

Monoclonal Antibodies (Mabs)

- direct destruction of tumor cells with or without “Rx warhead”
- tagging tumor cells for destruction by immune cells
- blocking tumor cell signaling pathways to halt proliferation (anti-EGFR Mabs)
- blocking host tissue stroma signaling pathways that promote tumor proliferation (anti-angiogenesis Mabs)
- physical access to target tumor cells antigen-deletion clones escape destruction
Immunotherapy for Cancer

- far greater technical challenge than most antimicrobial vaccines
- antigenic variation in different tumor cell clones plus inter-patient variation
- how to identify the best combination of antigens as vaccine candidates
- high probability of antigen-negative/deletion variants and tumor relapse
- analogy with the still unsuccessful quest for HIV vaccine
- same problem: massive antigenic heterogeneity due to rapid evolution of new viral quasispecies
Setting the Immune System Free to Combat Cancer
The Immune System: Detection and Response to ‘Non-Self’ Signals

- Adaptive immunity
 - B lymphocytes (antibodies)
 - T lymphocytes (cytotoxic ‘killer’ cells)
- Feedback controls
 - Immune memory and rapid response to next exposure
 - Immune checkpoint controls to prevent excessive immune reactions and limit autoimmunity risk
Immunoevasion by Tumor Cells

Stealth
- antigen-deletion variant tumor cell clones go undetected

Hijacking
- tumor molecules activate regulatory T cells to suppress anti-tumor killer T cells

Adaptive Immunity
- immune memory and rapid response to next exposure

Feedback Controls
- immune checkpoint controls to prevent excessive immune reactions and limit autoimmunity risk
New Therapeutic Strategies to Circumvent Tumor-Mediated Suppression of Anti-Tumor Immune Responses

- circumventing tumor-mediated activation of T regulatory (Treg) cells to limit activity of anti-tumor killer T cells

- immune checkpoint modulation
 - “releasing the brakes” on the immune system
 - “removing the blindfold”
 - “unleashing the killer instinct”
The Promise of Immune Checkpoint Modulation Versus The Drug Resistance Problem in Targeted Therapy

- Clones
 - Rx_1
 - Rx_2
 - Rx_3
 - Rx_4
 - Rx_5

- Immune checkpoint modulation agents

- Cytotoxic T cells

- Targeted drugs

- Rx-resistant clones/
 - Rx refractory disease

- Adaptive evolution of immune response and expanded cytotoxic T cell responses
Tumor-Mediated Inactivation of T Effector Cells by PDL1 Expression
Ipilimumab Blocks Negative Signaling From CTLA-4

Co-stimulation via CD28: T-cell activation

CTLA-4 blocks co-stimulation: No T-cell activation

Ipilimumab blocks CTLA-4: T-cell activation

APC, antigen-presenting cell; CTLA-4, cytotoxic T-lymphocyte antigen-4; MHC, major histocompatibility complex; TCR, T-cell receptor.

Adapted from Lebbé et al. ESMO 2008
The Promise of Immune Checkpoint Modulation Drugs

- novel concept to circumvent tumor-mediated suppression of anti-tumor T cell responses

- production of CTLA-4 and PD-1 by tumor cells stimulates regulatory T cells to suppress killer T cells

- circumvention of checkpoint block
 - anti-CTLA-4 monoclonal antibodies (ipilimumab; Yervoy, Bristol-Myers)
 - anti-PD-1 antibodies (nivolumab, Bristol-Myers; pembrolizumab, Merck)
Unique Kinetics of Response in Patients Treated With Ipilimumab

Screening

Week 12: Swelling and Progression

Week 12: Improved

Week 16: Continued Improvement

Week 72: Complete Remission

Week 108: Complete Remission

Images courtesy of Jedd D. Wolchok, MD,
Activated (Immune) Cell Therapy (ACT) and Cancer: “Living Drugs”
Activated (Immune) Cell Therapy (ACT) for Cancer

- capture, expand and re-infuse unmodified tumor-infiltrating lymphocytes (TIL)
- genetic engineering of killer lymphocytes with new T cell receptors (TCRs) to enhance tumor cell detection and killing
Tumor Infiltrating Lymphocytes (TIL)

Modern Pathology - Figure 5 for article: Tumor-infiltrating...www.nature.com
Tumor Infiltrating Lymphocyte (T-cell) Study

1. Debulking surgery performed
2. Lymphocytes isolated
3. Lymphocytes expanded
4. Tumor infiltrating lymphocytes administered into the patient
Genetic Engineering of T Cells for Adoptive Cell Therapy (ACT) in Cancer

Chimeric Antigen Receptors (CARs)

- T Cell
- co-stimulatory molecules and activation of T cell cytotoxic killing
- antigen recognition/binding protein
- tumor antigen
- Tumor Cell
Immunotherapy and Cancer

Challenges

- identification of the right tumor antigen(s) to attack
 - the clonal heterogeneity challenge
- ensuring that the antigen(s) selected for attack are not present on normal host tissues
 - NCI trial fatalities with MAGE-A3 TCR engineered T cell attack on related MAGE-A in brain and Titin in heart
- limiting the immunoevasion mechanisms of the tumor
Milestone Timelines in Evolution of Melanoma Immunotherapy

Figure 1. Timeline of milestones in melanoma immunotherapy. Some of the key scientific and clinical advances leading to recent gains in the treatment of advanced melanoma patients are indicated. Since 2010, two classes of immune checkpoint inhibitors that target the T-cell inhibitory receptors CTLA-4 (ipilimumab) and PD-1 (pembrolizumab and nivolumab), as well as targeted therapies including BRAF inhibitors (vemurafenib and dabrafenib) and a MEK inhibitor (trametinib), have achieved FDA approval. CTLA-4 = cytotoxic T-lymphocyte-associated antigen 4; HD = high-dose; IFN = interferon; IL = interleukin; PD-1 = programmed cell death protein-1; TIL = tumor-infiltrating lymphocyte.

From: M. Diamond et al. (2015) Abeloff’s Clinical Oncology Issue 2
BIO 302: Cancer Treatment

Summary of Key Issues
The Principal Challenges in Cancer Treatment

- early (pre-metastatic) detection and removal of primary tumor (=cure)
- identification and treatment decisions for patients at-risk of metastatic disease due to locally invasive tumor but no detectable metastases
 - only small fraction may need treatment
The Three Most Dangerous Phenotypes in Tumor Cell Clones: metastasis; immunoevasion; and drug resistance

Dynamic Heterogeneity

Emergence and Adaptive Evolution of Different Tumor Clones and Subclones During Tumor Progression
The Principal Challenges in Cancer Treatment

- the heterogeneity challenge
 - genomic instability and rapid evolution of tumor clones with highly variable phenotypes and Rx responses
 - intra-lesion heterogeneity (zonal variation)
 - inter-lesion heterogeneity in same patients
 - inter-patient variation

- the central problem in effective therapy
Cancer Treatment

- clonal heterogeneity and plasticity (redundancy) molecular signaling networks
 - the core problem in the design of effective therapies
 - hitting multiple targets
 - different clones
 - different signaling pathways
Mapping the Dynamics of Clonal Diversification in Tumor Progression

- urgent need for new technologies for minimally invasive profiling of the full spectrum of clones present in a patient and changes occurring over time with treatment

- difficult to sample (biopsy) multiple metastases in solid tumors

- the quest to create a ‘liquid biopsy’ for profiling clonal dynamics for solid tumor profiling from analysis of blood samples
 - exosomes
 - circulating tumor cells
 - cell-free (cf) DNA or miRNAs from tumor cells
Knowing When to Stop!

“Insanity is doing the same thing over and over again and expecting a different result.”

Albert Einstein
Cancer Treatment

- how to design new strategies to hit multiple clones and every new clonal variant that emerges
- the promise of immunotherapy
 - leveraging the detection and destruction capabilities of the host immune system
 - reactivation of immune system following suppression by tumor
 - early stages of assessing in clinical efficacy
 - highly promising early results but long term evaluation needed to assess risk of relapse due to immunoevasion clones
 - value of new combinations of drug and immunotherapies?